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ABSTRACT
The paper explores the small motion characteristics of a string supported rigid body. The equations

of motion are generated using two approaches: Lagrange’s equation, and constrained Newton-Euler. The
geometry is studied to determine the location of the centre of curvature of the path of the centre of mass, and
its effect on the natural frequency.

Keywords: equations of motion; natural frequency; centre of curvature.

TITRE FRANÇAIS DE L’ARTICLE (MAXIMUM DEUX LIGNES)

RÉSUMÉ
L’article explore les caractéristiques de petit mouvement d’un corps rigide supporté par des cordes. Les

équations de mouvement sont générés à l’aide de deux approches : l’équation de Lagrange et Newton-Euler
contraint. Le la géométrie est étudiée pour déterminer l’emplacement du centre de courbure de la trajectoire
du centre de masse, et son effet sur la fréquence naturelle.

Mots-clés : équations de mouvement ; fréquence naturelle ; centre de courbure.
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1. INTRODUCTION

The objective of this study is to explore oscillatory motion of a string supported rigid body, like the one
shown in Fig. 1. The body is assumed to be restricted to planar motion, i.e., it can move in the x-y plane, and
rotate about a perpendicular z-axis. It is assumed that there are two strings restricting the motion, and that
both remain taut (or equivalently, that they are rigid and can support a compressive load), and that as a result,
the system has a single degree of freedom. The problem is assumed to be well defined, e.g., the geometry
of the strings is such that any singular configurations or limits of motion are avoided. Further, the motion
is defined as measured from an equilibrium condition, i.e., when 𝑥 = 𝑦 = 𝜃 = 0, the body is in equilibrium,
and lastly, small motions are considered, such that the resulting equation of motion can be linearized.

The equations of motion are generated using two approaches: Lagrange’s equation, and constrained
Newton-Euler, and the results are compared. The geometry of the problem is studied to determine the
location of the centre of curvature of the path of the centre of mass, and its effect on the natural frequency.
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Fig. 1. A mass suspended by strings, showing the instant centre (centre of zero velocity) at point 𝐻, and the centre of
curvature (point 𝐹) of the path of the centre of mass (point 𝐺).

2. LAGRANGIAN APPROACH

Lagrange’s well-known equation of motion can be used to find the equation of motion of a body or a
system of bodies. For a detailed discussion of Lagrange’s equation, see Greenwood[1]. For a conservative
system like the one considered, the external forces can be ignored, and the equation becomes:

d
d𝑡

(
∂𝐿

∂ ¤𝑞

)
− ∂𝐿

∂𝑞
= 0 (1)

The Lagrangian (𝐿) is the difference between the kinetic energy (𝑇) and the potential energy (𝑉), and 𝑞 is a
generalized coordinate. There is one generalized coordinate assigned for each degree of freedom.

𝐿 = 𝑇 −𝑉 (2)

In order to develop expressions for 𝐿 and 𝑉 , an analysis of the kinematics follows.
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2.1. Kinematic analysis
The analysis begins with the definition of the orthogonal operator, as given in Eq. (3). If a vector 𝒗 is

defined as:
𝒗 =

{
𝑣𝑥
𝑣𝑦

}
⇒ 𝒗⊥ =

{
−𝑣𝑦
𝑣𝑥

}
(3)

If the vector 𝒓 lies in the plane of interest, and the vector 𝝎 is perpendicular to this plane, then the orthogonal
operator allows the expression of the cross product as:

𝒗 = 𝝎 × 𝒓 = 𝜔𝒓⊥ (4)

where 𝜔 = |𝝎|. Also, considering the dot product:

𝒗 · 𝒗⊥ = 𝒗′𝒗⊥ = 0 (5)

Once the notation has been defined, a standard relative velocity equation is formed for the points 𝐵 and 𝐷

(as defined in Fig. 1):

𝒗𝐵 + 𝒗𝐷/𝐵 = 𝒗𝐷 (6)

or equivalently:

𝜔1𝒓
⊥
𝐵/𝐴 + 𝜔2𝒓

⊥
𝐷/𝐵 = 𝜔3𝒓

⊥
𝐷/𝐶 (7)

where 𝜔1, 𝜔2, and 𝜔3 are the angular velocities defined in Fig. 1. Gathering the angular velocities into a
vector gives: [

𝒓⊥
𝐵/𝐴 𝒓⊥

𝐷/𝐵

] {
𝜔1
𝜔2

}
= 𝜔3𝒓

⊥
𝐷/𝐶 (8)

Two angular velocities of can be expressed as a linear function of the third.{
𝜔1
𝜔2

}
=

[
𝒓⊥
𝐵/𝐴 𝒓⊥

𝐷/𝐵

]−1
𝜔3𝒓

⊥
𝐷/𝐶 =

{
𝑎

𝑏

}
𝜔3 (9)

A similar expression can be applied to find the velocity of the centre of mass 𝐺.

𝒗𝐺 = 𝒗𝐵 + 𝒗𝐺/𝐵

= 𝜔1𝒓
⊥
𝐵/𝐴 + 𝜔2𝒓

⊥
𝐺/𝐵

=

[
𝒓⊥
𝐵/𝐴 𝒓⊥

𝐺/𝐵

] {
𝜔1
𝜔2

}
=

[
𝒓⊥
𝐵/𝐴 𝒓⊥

𝐺/𝐵

] [
𝒓⊥
𝐵/𝐴 𝒓⊥

𝐷/𝐵

]−1
𝜔3𝒓

⊥
𝐷/𝐶 = 𝒓1𝜔3

(10)

where:

𝒓1 =

[
𝒓⊥
𝐵/𝐴 𝒓⊥

𝐺/𝐵

] [
𝒓⊥
𝐵/𝐴 𝒓⊥

𝐷/𝐵

]−1
𝒓⊥
𝐷/𝐶 (11)

Note that the 𝒓1 vector must be tangent to the path of point 𝐺, i.e., 𝒓1 = 𝑟1𝒖̂t, and that:

𝒓𝐺/𝐸 =
𝒓⊥1
𝑏

(12)
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where the point 𝐸 is the instant center of motion of the body. In cases where the angular velocity of the body
is zero (e.g., the strings are parallel), the value 𝑏 = 0, and the distance to the instant centre is undefined. The
acceleration problem is solved next:

𝒂𝐵 + 𝒂𝐷/𝐵 = 𝒂𝐷 (13)

or equivalently:

𝛼1𝒓
⊥
𝐵/𝐴 − 𝜔2

1𝒓𝐵/𝐴 + 𝛼2𝒓
⊥
𝐷/𝐵 − 𝜔2

2𝒓𝐷/𝐵 = 𝛼3𝒓
⊥
𝐷/𝐶 − 𝜔2

3𝒓𝐷/𝐶 (14)

Gathering two angular accelerations gives:[
𝒓⊥
𝐵/𝐴 𝒓⊥

𝐷/𝐵

] {
𝛼1
𝛼2

}
= 𝛼3𝒓

⊥
𝐷/𝐶 − 𝜔2

3𝒓𝐷/𝐶 + 𝜔2
1𝒓𝐵/𝐴 + 𝜔2

2𝒓𝐷/𝐵 (15)

Solving for the angular accelerations gives:

{
𝛼1
𝛼2

}
=

[
𝒓⊥
𝐵/𝐴 𝒓⊥

𝐷/𝐵

]−1 {
𝛼3𝒓

⊥
𝐷/𝐶 − 𝜔2

3𝒓𝐷/𝐶 + 𝜔2
1𝒓𝐵/𝐴 + 𝜔2

2𝒓𝐷/𝐵
}

=

[
𝒓⊥
𝐵/𝐴 𝒓⊥

𝐷/𝐵

]−1
{
𝛼3𝒓

⊥
𝐷/𝐶 − 𝜔2

3𝒓𝐷/𝐶 +
[
𝒓𝐵/𝐴 𝒓𝐷/𝐵

] {
𝜔2

1
𝜔2

2

}} (16)

The acceleration of point 𝐺 can be written:

𝒂𝐺 = 𝒂𝐵 + 𝒂𝐺/𝐵

= −𝜔2
1𝒓𝐵/𝐴 + 𝛼1𝒓

⊥
𝐵/𝐴 − 𝜔2

2𝒓𝐺/𝐵 + 𝛼2𝒓
⊥
𝐺/𝐵

=

[
𝒓⊥
𝐵/𝐴 𝒓⊥

𝐺/𝐵

] {
𝛼1
𝛼2

}
−

[
𝒓𝐵/𝐴 𝒓𝐺/𝐵

] {
𝜔2

1
𝜔2

2

}
= 𝒓1𝛼3 + 𝒓2𝜔

2
3

(17)

where:

𝒓2 =

[
𝒓⊥
𝐵/𝐴 𝒓⊥

𝐺/𝐵

] [
𝒓⊥
𝐵/𝐴 𝒓⊥

𝐷/𝐵

]−1
[ [
𝒓𝐵/𝐴 𝒓𝐷/𝐵

] {
𝑎2

𝑏2

}
− 𝒓𝐷/𝐶

]
−

[
𝒓𝐵/𝐴 𝒓𝐺/𝐵

] {
𝑎2

𝑏2

}
(18)

Next, an expression for the normal component of acceleration of point 𝐺 can be written as a component of
the total acceleration.

𝒂n = (𝒂𝐺 · 𝒖̂n)𝒖̂n (19)

The same acceleration can also be written in terms of the velocity of point 𝐺 and the location of point 𝐹
(the centre of curvature of the path of point 𝐺). One might expect that point 𝐹 and point 𝐸 share the same
location, but a simple contra-example is the case of parallel equal length strings, where point 𝐸 is infinitely
far away, but the distance from 𝐺 to 𝐹 must be just the length of the strings.

𝒂n =
|𝒗𝐺 |2
|𝒓𝐹/𝐺 | 𝒖̂n (20)
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Equating the expressions in Eq. (19) and (20) and rearranging gives an expression for the location of point 𝐹.

|𝒓𝐹/𝐺 | = |𝒗𝐺 |2
𝒂𝐺 · 𝒖̂n

(21)

Substituting the expressions for the velocity and acceleration of point 𝐺 gives:

𝒓𝐹/𝐺 = |𝒓𝐹/𝐺 |𝒖̂n =
𝑟2

1𝜔
2
3(

𝑟1𝛼3𝒖̂t + 𝒓2𝜔
2
3

)
· 𝒖̂n

𝒖̂n =
𝑟2

1𝜔
2
3

𝒓2𝜔
2
3 · 𝒖̂n

𝒖̂n =
𝑟2

1
𝒓2 · 𝒖̂n

𝒖̂n (22)

Note that, as expected, the curvature of the path of 𝐺 is not a function of the velocity or acceleration of
the body, so the angular velocity and angular acceleration terms cancel out of the expression. The result
also implies that the vectors from the point 𝐺 to the centre of curvature 𝐹 and to the instant centre 𝐻 must
be co-linear. Because the location of the centre of curvature is independent of the angular velocity and
acceleration, one can simplify the calculation in practice by assuming 𝜔3 = 1 and 𝛼3 = 0, and noting that in
this case, 𝒗𝐺 = 𝒓1 and 𝒂𝐺 = 𝒓2.

2.2. Energy expressions and the Lagrangian
Once the locations of points 𝐸 and 𝐹 have been found, expressions for the kinetic and potential energy can

be formed. To simplify the notation, let |𝒓𝐺/𝐹 | = 𝑟𝐺/𝐹 and |𝒓𝐺/𝐸 | = 𝑟𝐺/𝐸 . The potential energy is found by
assuming that the body moves on an arc as defined by the centre of curvature 𝐹, with angular displacement
of 𝜃4.

𝑉 = 𝑚𝑔𝑟𝐺/𝐹 (1 − cos 𝜃4) (23)

Conversely, the kinetic energy depends on the relative contribution of the linear and angular velocities, which
is set by the location of the instant centre 𝐸 .

𝑇 =
1
2
𝐼𝐸𝜔

2
2 =

1
2

(
𝐼𝐺 + 𝑚𝑟2

𝐺/𝐸

)
¤𝜃2
2 (24)

The generalized coordinate 𝑞 will be chosen as 𝜃2. Note that when evaluating the derivatives for Lagrange’s
equations, one is faced with the terms for the rate of change of 𝑟𝐺/𝐸 and 𝑟𝐺/𝐹 with respect to 𝜃2. The static
equilibrium condition requires that both points 𝐸 and 𝐹 must be directly vertically above point 𝐺, and further
that the tangent to the path of all three points is exactly horizontal. The distance between the points is not
constant, but is at a minimum when the body is in equilibrium, which implies that the rate of change of must
be instantaneously zero. This allows a significant simplification to the equation of motion. Computing the
first term of Lagrange’s equation:

∂𝐿

∂ ¤𝑞 =
∂𝐿

∂ ¤𝜃2
=

∂𝑇

∂ ¤𝜃2
−
�
�
��7

0
∂𝑉

∂ ¤𝜃2
=

(
𝐼𝐺 + 𝑚𝑟2

𝐺/𝐸

)
¤𝜃2 (25)

d
dt

(
∂𝐿

∂ ¤𝑞

)
=

(
𝐼𝐺 + 𝑚𝑟2

𝐺/𝐸

)
¥𝜃2 (26)

To compute the result for potential energy, a relation for 𝜃4 is needed. Equating the displacement of 𝐺, for
small motions, gives:

𝑟𝐺/𝐸∂𝜃2 = 𝑟𝐺/𝐹∂𝜃4 (27)

or:
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𝑟𝐺/𝐸
𝑟𝐺/𝐹

=
∂𝜃4
∂𝜃2

(28)

So, for Lagrange:

∂𝐿

∂𝑞
=

∂𝐿

∂𝜃2
=
�
�
��7

0
∂𝑇

∂𝜃2
− ∂𝑉

∂𝜃2
= −𝑚𝑔𝑟𝐺/𝐹 sin 𝜃4

∂𝜃4
∂𝜃2

= −𝑚𝑔𝑟𝐺/𝐹 sin 𝜃4
𝑟𝐺/𝐸
𝑟𝐺/𝐹

≈ −𝑚𝑔𝑟𝐺/𝐸𝜃4

≈ −𝑚𝑔
𝑟2
𝐺/𝐸
𝑟𝐺/𝐹

𝜃2

(29)

The resulting equation of motion is then:(
𝐼𝐺 + 𝑚𝑟2

𝐺/𝐸

)
¥𝜃2 + 𝑚𝑔

𝑟2
𝐺/𝐸
𝑟𝐺/𝐹

𝜃2 = 0 (30)

Note the relationship to the famous Euler-Savary equation, where the stiffness term as shown is directly the
distance from the centre of mass to a point on the inflection circle. For more information on the Euler-Savary
equation, see Hartenberg and Denavit[2]. Dividing through by the square of the distance to the instant centre:(

𝐼𝐺

𝑟2
𝐺/𝐸

+ 𝑚

)
¥𝜃2 +

𝑚𝑔

𝑟𝐺/𝐹
𝜃2 = 0 ⇒ 𝜔𝑛 =

√√√√ 𝑚𝑔

𝑟𝐺/𝐹

(
𝐼𝐺

𝑟2
𝐺/𝐸

+ 𝑚

) (31)

An examination of the result shows some interesting points. If the instant centre is infinitely distant, as in
the case of parallel strings, the motion of the body is purely translational, and the effect of the moment of
inertia should disappear, as it does in Eq. (31). Also, the radius of curvature appears in the denominator
of the stiffness term. If one considers a case with equal length parallel strings, the period of the oscillation
would be inversely proportional to the square root of the length of the string, as it is in a simple pendulum.

3. CONSTRAINED NEWTON-EULER EQUATION APPROACH

The equations of motion of the string supported body can be generated using the Newton-Euler approach
for comparison. The method begins with the definition of coordinates. The position vector 𝒑 is defined as
the location of the mass centre 𝐺, and the orientation 𝜃 around an axis perpendicular to the plane of motion.

𝒑 =


𝑥𝐺
𝑦𝐺
𝜃

 (32)

The Newton-Euler equations are written together as:

M ¥𝒑 =
∑︁

𝒇 ( 𝒑, 𝒘, 𝑡) (33)

The mass matrix M is formed by filling its diagonal with the mass and inertia values.

2023 CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium 6



M =


𝑚 0 0
0 𝑚 0
0 0 𝐼z

 (34)

The forces are sorted into a number of different categories: inertial, elastic, constraint, and applied. The
inertial forces are the centripetal forces and gyroscopic moments that appear in the Newton-Euler equations;
expressions for these terms are well known. They do not appear in this scenario and are ignored. The elastic
forces are generated by ‘flexible’ joints, e.g., a spring or bushing; they also do not appear in this scenario
and are ignored. The constraint forces 𝒇 c are those applied by ‘rigid’ connections, i.e., those that reduce the
degrees of freedom of the system, e.g., a hinge or a string. The applied forces 𝒇 a are anything external to the
system. In this case, the weight is considered an applied force. The equation of motion can be rewritten as:

M ¥𝒑 =
∑︁

𝒇 c +
∑︁

𝒇 a (35)

To linearize the Newton-Euler equations, a variation is taken.

M𝛿 ¥𝒑 =
∑︁

𝛿 𝒇 c +
∑︁

𝛿 𝒇 a (36)

3.1. Constraints
Expressions for the variation of the forces are needed. The constraint forces are considered first. The rigid

connectors are modelled using algebraic constraint equations; expressions for the constraint forces will be
developed from these constraint equations. The constraint equation is:

𝝓( 𝒑) = 0 (37)

Each row of the 𝝓 vector represents a single constraint, so most mechanical connectors will require more
than one row. The string constraint removes only a single degree of freedom, so each string requires one row.
The constraint equations can be linearized by considering the motions to be small. Taking a variation gives:

𝛿𝝓 =
∂𝝓

∂𝒑
𝛿 𝒑 = J𝛿 𝒑 = 0 (38)

The partial derivative of the constraint equations with respect to the coordinates is the constraint Jacobian
matrix J. The deflection of the rigid elements is expressed as a linear function of the motion coordinates, and
must be zero. In this scenario, only holonomic constraints are considered. The constraint Jacobian matrix
for a single string is:

J =
[
𝑢𝑥 𝑢𝑦 𝑟𝑥𝑢𝑦 − 𝑟𝑦𝑢𝑥

]
(39)

where the string direction is defined by a unit vector 𝒖̂, and the location of the point where it is attached to
the body is given by 𝒓. The terms 𝑢𝑥 , 𝑢𝑦 represent the components of the unit vector, and similar for 𝑟𝑥 , 𝑟𝑦 .
The constraint equation enforces the requirement that the motion of the body at the point where the string
attaches to it must be perpendicular to the direction of the string. In this case, because there are two strings,
each one will contribute one row to the constraint matrix. The constraint forces can be expressed using the
Jacobian matrix:

𝒇 c = −J′𝝀 (40)

where 𝝀 is known as a Lagrange multiplier. This equation stems from the fact that a motion in a particular
direction can only be resisted by a force in the same direction. For more information on Lagrange multipliers,
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see Greenwood[1]. The Lagrange multiplier scales a vector in each direction by some unknown amount. In
the example of the string, each unknown Lagrange multiplier would be the force in a string. The Jacobian
matrix would serve to transform those string forces into the components in each direction, and compute the
resulting moment around the mass centre as well. The unknown values of the vector 𝝀 are evaluated at
equilibrium, so the tangent stiffness matrix requires that the preloads be determined prior to generation of
the equations of motion, i.e., using static equilibrium. If there is no preload in the mechanism at equilibrium,
the tangent stiffness term evaluates to zero. The constraint forces are linearized by taking a variation.

𝛿 𝒇 c = −𝛿J′𝝀 − J′𝛿𝝀

= −∂J′

∂𝒑
𝛿 𝒑𝝀 − J′𝛿𝝀

(41)

The constraints generate a tangent stiffness matrix in the event that there are any preload forces carried when
the system is in equilibrium. It is defined as:

Kc =
∂J′

∂𝒑
𝝀 (42)

so the constraint forces can be expressed as:

𝛿 𝒇 c = −Kc𝛿 𝒑 − J′𝛿𝝀 (43)

The tangent stiffness term can be added to any other stiffness terms to contribute to a total stiffness matrix.
Any changes in the applied forces are treated as functions of the position vector, or its derivative. In this
case, there is no damping, so only the stiffness terms are needed.

𝛿 𝒇 a =
∂ 𝒇 a
∂𝒑

𝛿 𝒑 = −Ka𝛿 𝒑 (44)

The resulting equation of motion is:

M𝛿 ¥𝒑 = −(Kc + Ka)𝛿 𝒑 − J′𝛿𝝀 (45)

In order to reduce the equations to a minimal set of coordinates, an orthogonal complement of the Jacobian
is used. The complement is a matrix T defined such that its columns are perpendicular to the rows of the
Jacobian. More precisely, it is an orthonormal basis for the null space of the Jacobian. As a result of the
definition, the product of the complement and the Jacobian is zero.

JT = 0 (46)

The complement matrix is not unique. For example, consider the case of a single vector in three dimensions.
The null space is the plane that is normal to that vector. If two perpendicular vectors in the normal plane
are sought, an infinite number of choices exist, distinguished by a rotation around the normal vector. There
are several methods for calculating a suitable choice, e.g., the null space can be found using singular value
decomposition. For more discussion on coordinate reduction, see Amirouche[3] or Shabana[4].

A new coordinate vector 𝒙 is defined using the complement. It should be noted that this vector is now
in nonphysical coordinates, i.e., the values may not directly correspond to the physical motions, although in
some cases, a subset of the physical coordinates may be suitable. In any case, the physical coordinates can
be recovered using the complement matrix.
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T𝒙 = 𝛿 𝒑 (47)

As a result of this definition, any possible selection of the coordinate vector must satisfy the constraint
equations.

JT𝒙 = J𝛿 𝒑 = 0 (48)

The premultiplication by the orthogonal complement reduces the number of equations to match the number
of coordinates, and eliminates the remaining constraint force terms from the equations.

T′M𝛿 ¥𝒑 + T′K𝛿 𝒑 = −T′J′𝛿𝝀 = 0 (49)

Finally, the new coordinates can be substituted into the equations of motion.

T′MT¥𝒙 + T′KT𝒙 = 0 (50)

3.2. Form of the stiffness matrix
Consider a string that connects the body to the ground, and maintains a fixed distance between its endpoints.

Now the stiffness matrix can be written by expanding expressions for the rate of change of force and moment
with respect to translation and rotation of the body.

Kc = −∂ 𝒇 c
∂𝒑

= −
[
∂ 𝒇
∂𝒙

∂ 𝒇
∂𝜃

∂𝑚
∂𝒙

∂𝑚
∂𝜃

]
(51)

The location of the moving end of the string is defined as 𝒙B, and the fixed end as 𝒙A. The location 𝒙B can
be found from the location 𝒙 of the body, and the distance 𝒓 of the end point B from the centre of mass. Note
that 𝒓 is defined as fixed in the rotating reference frame, and the rotation is assumed to be small.

𝒙B = 𝒙 + 𝒓 + 𝜃𝒓⊥ (52)

The rate of change of location of the end of the string with respect to both the translation and rotation of the
body can be found by differentiation. As expected, the motion of the end of the string is the same as that of
the mass centre when there is no rotation, and that the contribution of rotation depends on only 𝒓.

∂𝒙B
∂𝒙

= I (53)

∂𝒙B
∂𝜃

= 𝒓⊥ (54)

The length of the string is determined from the locations of its end-points.

𝑙 = |𝒙A − 𝒙B | (55)

A unit vector acting along the string defines the direction. The unit vector is expressed in global coordinates,
as are the positions of the end-points of the spring.

𝒖̂ =
𝒙A − 𝒙B

𝑙
(56)

Note that the force must be expressed in the body fixed coordinate system, as this is the system in which
the equations of motion are written. The inverse rotation matrix is used to convert the force vector from the
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global frame to the body fixed frame. The magnitude of the force, being a constant scalar, can be factored
out in front, and the rotation matrix can be expanded.

𝒇 = 𝑓 𝒖̂ − 𝑓 𝜃𝒖⊥ (57)

The first term in the stiffness matrix can now be expanded using the product rule.

∂ 𝒇

∂𝒙
= 𝑓

∂𝒖̂

∂𝒙
− 𝑓

∂𝜃

∂𝒙
𝒖⊥ − 𝑓 𝜃

∂𝒖⊥

∂𝒙
(58)

When considering the resulting expression, the second and third terms can be neglected. The second term
will go to zero when the expression is evaluated at 𝜃 = 0, and the third will go to zero, as 𝜃 is independent of
𝒙. Expanding the remaining derivative terms allows an algebraic expression for the first term in the stiffness
matrix to be found.

∂𝒖̂

∂𝒙
=

∂𝒖̂

∂𝒙B

∂𝒙B
∂𝒙

=
∂𝒖̂

∂𝒙B

= −1
𝑙
I + (𝒙A − 𝒙B)

𝒖̂′

𝑙2
= −1

𝑙
[I − 𝒖̂𝒖̂′] = −1

𝑙
𝒖⊥𝒖⊥′

(59)

Substitution gives:

∂ 𝒇

∂𝒙
= −𝒖⊥ 𝑓

𝑙
𝒖⊥′ (60)

The second term in the stiffness matrix can now be expanded using the product rule.

𝒇 = 𝑓 𝒖̂ − 𝑓 𝜃𝒖⊥ (61)

∂ 𝒇

∂𝜃
= 𝑓

∂𝒖̂

∂𝜃
− 𝑓 𝒖⊥ − 𝑓

∂𝒖⊥

∂𝜃
𝜃 (62)

Again, the third term in the expression can be neglected as it will go to zero when evaluated at 𝜃 = 0. The
rate of change of the force relative to rotation can be found in terms of the force relative to translation.

∂𝒖̂

∂𝜃
=

∂𝒖̂

∂𝒙B

∂𝒙B
∂𝜃

=
∂𝒖̂

∂𝒙
𝒓⊥ (63)

Substituting gives:

∂ 𝒇

∂𝜃
= −𝒖⊥ 𝑓

𝑙
𝒖⊥′𝒓⊥ − 𝒇⊥ (64)

Finally, the change of moment terms can be found.

𝒎 = 𝒓⊥′ 𝒇 (65)

Recognizing that 𝒓 is constant and substituting the expressions for force gives:

∂𝒎

∂𝒙
= 𝒓⊥′∂ 𝒇

∂𝒙
= −𝒓⊥′𝒖⊥ 𝑓

𝑙
𝒖⊥′ (66)

∂𝒎

∂𝜃
= 𝒓⊥′∂ 𝒇

∂𝜃
= 𝒓⊥′∂ 𝒇

∂𝒙
𝒓⊥′ − 𝒓⊥′ 𝒇⊥ (67)
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The stiffness matrix is now complete.

Kc =

[
0 𝒇⊥

0 𝒓⊥′ 𝒇⊥

]
+

[
𝒖⊥ 𝑓

𝑙
𝒖⊥′ 𝒖⊥ 𝑓

𝑙
𝒖⊥′𝒓⊥

𝑠𝑦𝑚 𝒓⊥′𝒖⊥ 𝑓

𝑙
𝒖⊥′𝒓⊥

]
(68)

The stiffness matrix can be expanded as the sum of two components, one of which can be factored as below.

Kc =

[
0 𝒇⊥

0 𝒓′ 𝒇

]
+ 𝑓

𝑙

[
𝒖⊥

𝒓′𝒖

] [
𝒖⊥

𝒓′𝒖

] ′
= 𝑓


0 0 −𝑢𝑦
0 0 𝑢𝑥
0 0 𝑟𝑥𝑢𝑥 + 𝑟𝑦𝑢𝑦

 +
𝑓

𝑙


𝑢2
𝑦 −𝑢𝑥𝑢𝑦 −𝑢𝑦 (𝑟𝑥𝑢𝑥 + 𝑟𝑦𝑢𝑦)

−𝑢𝑥𝑢𝑦 𝑢2
𝑥 𝑢𝑥 (𝑟𝑥𝑢𝑥 + 𝑟𝑦𝑢𝑦)

−𝑢𝑦 (𝑟𝑥𝑢𝑥 + 𝑟𝑦𝑢𝑦) 𝑢𝑥 (𝑟𝑥𝑢𝑥 + 𝑟𝑦𝑢𝑦) (𝑟𝑥𝑢𝑥 + 𝑟𝑦𝑢𝑦)2


(69)

A careful examination of the two terms shows that the first one is due to the change in direction of the string
force relative to the body fixed frame as the body reorients, while the second is due to the change in direction
of the force as the string reorients. Not included in Eq. (69) is the effect of the weight force, which must
be computed separately. The weight force reorients relative to the body fixed rotating frame. The effect is
equivalent to a string of infinite length with a zero length radius vector.

4. EXAMPLE

Variations on a sample geometry are used to illustrate the result from each of the two methods. In all
cases, the mass 𝑚 = 24 kg, the moment of inertia 𝐼𝐺 = 2.5 kg m2, and the gravitational constant is taken as
𝑔 = 9.81 m/s2. The geometry of the four variations is shown in Fig. 2 and given in Table 1. In all four cases,
the results of both methods agreed to ten significant figures or better. The four variations are:

a) Example 1: strings are parallel, equal length, and equally loaded. In this case, the instant centre is
infinitely far away, so there is no rotation of the body. The radius of curvature of the path of the mass
centre is simply the length of both strings.

b) Example 2: strings are parallel, unequal length, and equally loaded. Again, the instant centre is
infinitely far away, so there is no rotation of the body. The radius of curvature of the path of the mass
centre is more challenging to find.

c) Example 3: strings are not parallel, equal length, equally loaded. The instant centre is a finite distance
from the mass centre, so the moment of inertia now has an influence on the result. The radius of
curvature of the path of the mass centre again requires calculation.

d) Example 4: Strings are not parallel, unequal length, and unequally loaded. The instant centre is the
same distance from the mass centre as in case c), but the radius of curvature has changed.

The matrix calculation for the first configuration is shown. The mass matrix is:

M =


24 0 0
0 24 0
0 0 2.5

 (70)

The stiffness matrix, including the contributions from each string and from the weight force, is:

K =


470.88 0.0 −117.72

0.0 0.0 0.0
−117.72 0.0 88.29

 (71)

The Jacobian constraint matrix and its complement are:
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(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Fig. 2. The equations of motion of the system were generated using both methods in four configurations.

Location Example 1 Example 2 Example 3 Example 4

𝒓𝐴 (-0.5, 0.75) m (-0.5, 0.75) m (-0.375, 0.75) m (-0.375, 0.75) m
𝒓𝐵 (-0.5, 0.25) m (-0.5, 0.25) m (-0.5, 0.25) m (-0.5, 0.25) m
𝒓𝐶 (0.5, 0.75) m (0.5, 0.75) m (0.375, 0.75) m (0.3125, 0.6875) m
𝒓𝐷 (0.5, 0.25) m (0.5, -0.25) m (0.5, 0.25) m (0.5, -0.25) m
𝒓𝐺/𝐸 ∞ ∞ 2.25 m 2.25 m
𝒓𝐺/𝐹 0.5 m 0.667 m 0.587 m 0.676 m
𝜔n 0.705 Hz 0.611 Hz 0.644 Hz 0.600 Hz

Table 1. Example system properties. Results computed with 𝑚 = 24 kg, 𝐼𝐺 = 2.5 kg m2, and 𝑔 = 9.81 m/s2.

J =

[
0.0 1.0 −0.5
0.0 1.0 0.5

]
⇒ T =


1
0
0

 (72)

The resulting equation of motion is:

24¥𝑥 + 470.88𝑥 = 0 ⇒ 𝜔𝑛 =

√︂
470.88

24
= 4.429 rad/s = 0.705 Hz (73)

5. CONCLUSIONS

The equations of motion to predict the small motion oscillations of a string suspended body have been
generated using two methods. The methods give identical results. The Lagrangian approach identifies that the
centre of curvature of the path of the centre of mass is an important factor in determining the behaviour. The
stiffness term of the equation of motion contains the distance from the centre of mass to centre of curvature
in the denominator, implying the geometries with higher curvature will have higher natural frequencies. It
is notable the two different geometries can have the same instant centre, but very different curvatures, so the
location of the instant centre alone is insufficient to determine the resulting natural frequency.
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