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ABSTRACT
As a planar 4R mechanism moves the four relative angles between the four links change, implying angular

velocity and acceleration. The input-output (IO) equation expresses one joint angle in terms of another as
an implicit function scaled by the link lengths. There are six distinct angle pairings meaning there are six
distinct IO equations for any given four-bar linkage. In this paper we present the six algebraic IO equations,
and their first two time derivatives. We introduce novel algorithms for determining the extreme output
angular velocities and accelerations given a specified constant input angular velocity, and present several
detailed examples. Moreover, it is shown that any of the angular velocity IO equations can be expressed
as an output angular velocity as a function of input angle for a specified constant input angular velocity.
Using this, an example of dimensional kinematic synthesis for output angular velocity function generation
is described in detail.

Keywords: Algebraic input-output equation; differential level kinematics; angular velocity function gen-
eration.

SYNTHÈSE CINÉMATIQUE DIMENSIONNELLE DE LA VITESSE ANGULAIRE DES
GÉNÉRATEURS DE FONCTIONS

RÉSUMÉ
Au fur et à mesure qu’un quadrilatère articulé se déplace, les quatre angles relatifs entre les quatre liens

changent, ce qui implique la vitesse et l’accélération. L’équation d’entrée-sortie (IO) exprime un angle de
liaison par rapport à un autre. Il existe six paires d’angles distinctes, ce qui signifie qu’il existe six équations
IO distinctes pour tous mécanisme à quatre barres données. Ces équations IO sont des fonctions implicites
en termes de longueurs de liens. Dans cet article, nous présentons les six équations algébriques IO, et leurs
deux premières dérivées par rapport au temps. Nous énonçons des algorithmes pour déterminer des vitesses
et accélérations angulaires extrêmes et nous fournissons quelques exemples détaillés étant donné une vitesse
angulaire d’entrée constante. De plus, il est montré que les équations de vitesse angulaire IO peuvent être
exprimées de la forme vitesse angulaire de sortie en fonction de l’angle relative d’entrée pour une vitesse
angulaire d’entrée constante spécifiée. Un exemple de la génération de fonction de vitesse angulaire de sortie
est décrit en détail.

Mots-clés : Équations algébriques d’entrée-sortie ; cinématique de niveau différentiel ; vitesse angulaire des
générateurs de fonctions .
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1. INTRODUCTION

The algebraic vi-vj input-output (IO) equations, where v = tan(θ/2), for planar and spherical four-bar
linkages [1–3] have recently led to some elegant and useful applications for synthesis and analysis. There
are six such equations for every four-bar kinematic architecture that relate the six distinct pairings of variable
joint parameters taken two at a time. Because these are algebraic polynomials, it is straightforward to
differentiate with respect to time, thereby revealing the velocity- and acceleration-level kinematics [4]. In
this paper, we will discuss a novel approach to determining output angular velocity and acceleration extrema,
as well as output angular velocity function generation synthesis in planar 4R mechanisms.

The first work investigating extreme output angular velocities is likely that of Kraus from 1939 [5, 6].
In that work, it was proposed that the angular velocity output/input ratio, θ̇4/θ̇1, of a double crank planar
linkage reaches an extreme value when the coupler and follower, links a2 and a3 in Fig. 1, become mutually
perpendicular. However, in 1944 Rosenauer [7] demonstrated that this is generally not true. Following
Kraus, the extreme angular velocities and accelerations of four-bar mechanisms were later investigated in
a methodical and more complete way by Ferdinand Freudenstein in 1956 [8]. In that work, Freudenstein
used graphical methods to derive the θ̇4/θ̇1 angular velocity ratio based on a directed distance ratio along
the Aronhold-Kennedy line of three collinear instantaneous centres of velocity (ICV), P13, P14, and P34, see
Fig. 1. This angular velocity ratio is the reciprocal of the mechanical advantage of the linkage [9], and hence
an important index of merit. But, there are in fact six distinct angular velocity ratios that are revealed with
the six planar 4R v̇i-v̇j IO equations [4]. Recall that the collineation axis is the line joining the two secondary
ICV, P13 and P24. In [8], Freudenstein proposed that an extreme value of the angular velocity ratio θ̇4/θ̇1
occurs when the collineation axis is perpendicular to the coupler, now known as Freudenstein’s Theorem 1.
In an appendix to that same paper, A.S. Hall rigourously proved the theorem.
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Fig. 1. The collineation axis and six instantaneous centres of velocity, Pi j, in a planar 4R linkage.

Consider the planar 4R linkage illustrated in Fig. 1. It is well known that as the 4R linkage moves it
has four primary ICV, one at the centre of each R-pair, and two secondary ICV. The six ICV are known
as velocity poles and the curves they move along are described as polodes, or centrodes as they are often
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called, see [9–12] for example. Two of the primary ICV, P12 and P23, move on polodes defined by the link
lengths, while P14 and P34 are stationary. The two secondary ICV, P13 and P24, also move on polodes. By
virtue of the Aronhold-Kennedy theorem, P13, P14, and P34 remain collinear as the motion evolves over time
meaning that the polode for P13 is a segment of the line joining the two ground-fixed R-pairs, the x0-axis,
and is located at the point of intersection of the x0-axis and the extension of the centreline of the coupler,
a2. Freudenstein’s Theorem 1 implies that the value of the ratio of the output angular velocity and the input
angular velocity, θ̇4 and θ̇1, can be expressed by the ratio of the values of the relative directed distances
between the three ICV located on the x0-axis in the following way [8, 13]:

θ̇4

θ̇1
=

dP13P14

dP13P14 +dP14P34

, (1)

where the directed distances dP14P34 and dP13P14 can be positive or negative depending on their relative direc-
tions. For example, dP13P14 is the distance from P13 to P14. The angular velocities are oppositely directed
when the ratio is negative.

However, Freudenstein’s Theorem 1 also applies to the ICV on each of the three other Aronhold-Kennedy
lines of three collinear ICV with respect to a number line coincident with the line of three ICV having its
origin on the central ICV. It seems that, to the best of the authors collective knowledge, with the exception
of [14], this fact has not been discussed in the literature. Following Freudenstein’s derivation logic, the three
remaining velocity ratios expressed as ratios of the relative locations of the three ICV on the three other
Aronhold-Kennedy lines, see Fig. 1, have never been stated explicitly as:

θ̇1

θ̇2
=

dP24P12

dP24P12 +dP12P14

;
θ̇3

θ̇2
=

dP13P12

dP13P12 +dP12P23

;
θ̇4

θ̇3
=

dP24P23

dP24P23 +dP23P34

. (2)

Regardless, the angular velocity ratios of θ̇1/θ̇3 and θ̇2/θ̇4 cannot be derived as ratios of collinear ICV
relative directed distances.

In Freudenstein’s work [8], the idea is first expressed of synthesising planar four-bar mechanisms to
generate prescribed output angular accelerations, but not as functions of linkage configuration, and was
not explored further. With the exception of one investigation on dimensional synthesis of planar four-
bar function generators under velocity and acceleration constraints [15], there is no reported work, up to
the authors’ collective knowledge, on generating an angular velocity output that is a function of the input
angle. Hence, one of the main contributions of this paper will be a novel algorithm for synthesising a
planar 4R mechanism to generate an angular velocity output that is a function of mechanism configuration
and a constant specified input angular velocity, for any of the six distinct IO angle pairs. The other main
contribution will be algorithms for computing output angular velocity and acceleration extrema using the
algebraic IO equations, and their time derivatives.

2. EXTREME OUTPUT ANGULAR VELOCITIES AND ACCELERATIONS

All moveable four-bar linkages generate six distinct functions between the four distinct joint variable
parameters taken two at a time, which we abstractly call vi and vj. While this may or may not be common
knowledge in the kinematics community, there is but one convenient and consistent way to determine and
express these six functions using algebraic means to be found in the literature, see [3]. In this section we
will list the six vi-vj IO equations, their time derivatives, algorithms for computing extreme values of angular
velocity and acceleration, and give several examples.

2.1. The Six vi - vj Algebraic IO Equations and Their Time Derivatives
Let the tangent half-angle input parameter be v1 = tan(θ1/2) and the output angle parameter be v4 =

tan(θ4/2). In [1] two elimination steps were applied to the Gröbner bases of the ideal generated by the
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Study soma coordinates x3, y1 and y2 to eliminate the angle parameters v2 and v3 from the equations yielding
the algebraic IO equation relating the v1 and v4 angle parameters, which we call the v1-v4 IO equation. It
has the form

Av2
1v2

4 +Bv2
1 +Cv2

4 −8a1a3v1v4 +D = 0, (3)

where

A = A1A2 = (a1 −a2 +a3 −a4)(a1 +a2 +a3 −a4),

B = B1B2 = (a1 +a2 −a3 −a4)(a1 −a2 −a3 −a4),

C =C1C2 = (a1 −a2 −a3 +a4)(a1 +a2 −a3 +a4),

D = D1D2 = (a1 +a2 +a3 +a4)(a1 −a2 +a3 +a4),

v1 = tan
(

θ1

2

)
, v4 = tan

(
θ4

2

)
.

This algebraic equation is of degree 4 in the v1 and v4 variable parameters, while the coefficients labelled A,
B, C, and D are each products of two bilinear factors which can be viewed as eight distinct planes treating
the four ai link lengths as homogeneous coordinates.

For the planar 4R, the five remaining vi-vj IO equations each contain all eight of the bilinear factors of the
coefficients labelled A1, A2, B1, B2, C1, C2, D1, and D2 in Eq. (3), but in different permutations. The v1-v2,
v1-v3, v2-v3, v2-v4, and v3-v4 IO equations are

A1B2v2
1v2

2 +A2B1v2
1 +C1D2v2

2 −8a2a4v1v2 +C2D1 = 0, (4)

A1B1v2
1v2

3 +A2B2v2
1 +C2D2v2

3 +C1D1 = 0, (5)

A1D2v2
2v2

3 +B2C1v2
2 +B1C2v2

3 −8a1a3v2v3 +A2D1 = 0, (6)

A1C1v2
2v2

4 +B2D2v2
2 +A2C2v2

4 +B1D1 = 0, (7)

A1C2v2
3v2

4 +B1D2v2
3 +A2C1v2

4 +8a2a4v3v4 +B2D1 = 0. (8)

The first time derivative needs a few words of discussion. Because the angle parameter is v = tan(θ/2),
the time derivative is configuration dependent in the following way

v̇ =
d
dt

tan(θ/2) =
θ̇

2
sec2 (θ/2) =

θ̇

2

(
cos2 (θ/2)+ sin2 (θ/2)

cos2 (θ/2)

)
=

θ̇

2
(
1+ v2) . (9)

Therefore the six angular velocity parameter IO equations are((
A1B2v2

2 +A2B1
)

v1 −4a2a4v2
)

v̇1 +
((

A1B2v2
1 +C1D2

)
v2 −4a2a4v1

)
v̇2 = 0, (10)(

A1B1v2
3 +A2B2

)
v1v̇1 +

(
A1B1v2

1 +C2D2
)

v3v̇3 = 0, (11)((
A1A2v2

4 +B1B2
)

v1 −4a1a3v4
)

v̇1 +
((

A1A2v2
1 +C1C2

)
v4 −4a1a3v1

)
v̇4 = 0, (12)((

A1D2v2
3 +B2C1

)
v2 −4a1a3v3

)
v̇2 +

((
A1D2v2

2 +B1C2
)

v3 −4a1a3v2
)

v̇3 = 0, (13)(
A1C1v2

4 +B2D2
)

v2v̇2 +
(
A1C1v2

2 +A2C2
)

v4v̇4 = 0, (14)((
A1C2v2

4 +B1D2
)

v3 +4a2a4v4
)

v̇3 +
((

A1C2v2
3 +A2C1

)
v4 +4a2a4v3

)
v̇4 = 0. (15)
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Using Eq. (9), the six angular velocity ratios are trivially obtained as

θ̇2

θ̇1
= −

(
(A1B2v2

2 +A2B1)v1 −4a2a4v2
)(

1+ v2
1
)(

(A1B2v2
1 +C1D2)v2 −4a2a4v1

)(
1+ v2

2

) , (16)

θ̇3

θ̇1
= −

(
A1B1v2

3 +A2B2
)(

1+ v2
1
)

v1(
A1B1v2

1 +C2D2
)(

1+ v2
3

)
v3
, (17)

θ̇4

θ̇1
= −

(
(A1A2v2

4 +B1B2)v1 −4a1a3v4
)(

1+ v2
1
)(

(A1A2v2
1 +C1C2)v4 −4a1a3v1

)(
1+ v2

4

) , (18)

θ̇3

θ̇2
= −

(
(A1D2v2

3 +B2C1)v2 −4a1a3v3
)(

1+ v2
2
)(

(A1D2v2
2 +B1C2)v3 −4a1a3v2

)(
1+ v2

3

) , (19)

θ̇2

θ̇4
= −

(
A1C1v2

4 +A2C2
)(

1+ v2
4
)

v4(
A1C1v2

2 +B2D2
)(

1+ v2
2

)
v2
, (20)

θ̇4

θ̇3
= −

(
(A1C2v2

4 +B1D2)v3 +4a2a4v4
)(

1+ v2
3
)(

(A1C2v2
3 +A2C1)v4 +4a2a4v3

)(
1+ v2

4

) . (21)

It is a straightforward exercise to show that Eqs. (1) and (18) yield identical results. These six angular
velocity IO equations can be directly used for angular velocity level synthesis as will be demonstrated in
Sect. 3. To do so with Eq. (1) requires additional kinematic models.

The six angular acceleration parameter IO equations are easily obtained as the time derivatives of the an-
gular velocity parameter IO equations. The time derivative of v̇ is a somewhat more complicated compound
function requiring a combination of the chain and power rules from elementary differential calculus [16] to
determine that

v̈ =
1
2
(
θ̈ + θ̇

2)(1+ v2) , (22)

which reveals that the angular acceleration parameter v̈ depends not only on angular acceleration, but on
angular velocity and configuration as well. The six angular acceleration parameter equations are(

(A1B2v2
2 +A2B1)v1 −4a2a4v2

)
v̈1 +

(
(A1B2v2

1 +C1D2)v2 −4a2a4v1
)

v̈2 +

(A1B2v2
2 +A2B1)v̇2

1 +(A1B2v2
1 +C1D2)v̇2

2 +4(A1B2v1v2 −2a2a4)v̇1v̇2 = 0, (23)

(A1B1v2
3 +A2B2)v1v̈1 +(A1B1v2

1 +C2D2)v3v̈3 +(A1B1v2
3 +A2B2)v̇2

1 +(A1B1v2
1 +C2D2)v̇2

3 +4A1B1v1v3v̇1v̇3 = 0, (24)(
(A1A2v2

4 +B1B2)v1 −4a1a3v4
)

v̈1 +
(
(A1A2v2

1 +C1C2)v4 −4a1a3v1
)

v̈4 +

(A1A2v2
4 +B1B2)v̇2

1 +(A1A2v2
1 +C1C2)v̇2

4 +4(A1A2v1v4 −2a1a3)v̇1v̇4 = 0, (25)(
(A1D2v2

3 +B2C1)v2 −4a1a3v3
)

v̈2 +
(
(A1D2v2

2 +B1C2)v3 −4a1a3v2
)

v̈3 +

(A1D2v2
3 +B2C1)v̇2

2 +(A1D2v2
2 +B1C2)v̇2

3 +4(A1D2v2v3 −2a1a3)v̇2v̇3 = 0, (26)

(A1C1v2
4 +B2D2)v2v̈2 +(A1C1v2

2 +A2C2)v4v̈4 +(A1C1v2
4 +B2D2)v̇2

2 +(A1C1v2
2 +A2C2)v̇2

4 +4A1C1v2v4v̇2v̇4 = 0, (27)(
(A1C2v2

4 +B1D2)v3 +4a2a4v4
)

v̈3 +
(
(A1C2v2

3 +A2C1)v4 +4a2a4v3
)

v̈4 +

(A1C2v2
4 +B1D2)v̇2

3 +(A1C2v2
3 +A2C1)v̇2

4 +4(A1C2v3v4 +2a2a4)v̇3v̇4 = 0. (28)
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2.2. Angular Velocity Extrema
We will determine the extreme output angular velocity given a specified set of link lengths and constant

input angular velocity. We can use any of the six vi-vj algebraic IO equations. To identify extreme angular
velocity and acceleration outputs for a constant input angular velocity requires that the angle parameters
be transformed back into angles. While θ̇i may be constant, the corresponding parameter v̇i is not, since it
is configuration dependent. For this example, we will consider the v2-v4 and v̇2-v̇4 IO equations, Eqs. (7)
and (20) respectively, since this angle pairing has never been found in the literature. The extreme angular
velocities, along with the configurations in which they occur in both assembly modes, can be easily obtained
computationally with the following algorithm.

Extreme planar 4R angular velocity algorithm.

If values for a1, a2, a3, and a4 are given and the input angular velocity is a constant specified value, we wish
to determine the critical values θicrit that result in θ̇ jmin/max , so θ j must be eliminated from both the position
and angular velocity IO equations.

1. Convert vi and vj in the IO equation to angles as v = tan(θ/2) and solve for θ j. There will be two
solutions, one for each assembly mode.

2. Substitute the expression for θ j from Step 1 into the θ̇i-θ̇ j equation and solve for θ̇ j, which gives
θ̇ j = f (θi) since θ̇i is a specified constant.

3. Solve
dθ̇ j

dθi
= 0 for θicrit and determine the values of θ̇ jmin/max corresponding to each distinct value of

θicrit .

For this example we will consider v4 and v2 as the input and output angle parameters respectively, and let
the constant input angular velocity and the link lengths of a planar 4R four-bar mechanism be θ̇4 = 10 rad/s,
a1 = 5, a2 = 6, a3 = 8, a4 = 2. Following the algorithm, we obtain an implicit equation of θ̇2 = f (θ4) and

plot it, see Fig. 2. Solving
dθ̇2

dθ4
= 0 for θ4crit we determine the values of θ̇2min/max corresponding to each

distinct value of θ4crit , which are listed in Table 1. It should be noted that determining the points of inflection

of a particular θ̇ j = f (θi) curve requires the second derivative,
d2θ̇ j

dθ 2
i
= 0.

Table 1. θ̇2min/max and θ4crit for θ̇4 = 10 rad/s.

Assembly mode θ̇2min/max rad/s θ4crit rad

1
5.385202141 -1.481326671

-5.385202141 1.4813266715

2
-5.385202141 -1.481326671

5.385202141 1.481326671
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.

Fig. 2. The θ̇2 = f (θ4) angular velocity profile.

2.3. Angular Acceleration Extrema
According to Freudenstein in [8], one of the extreme output angular accelerations for a crank-rocker,

assuming constant input angular velocity, is given by

θ̈4max =
θ̇ 2

1 a1

a2a3
(a1 +a2), (29)

where the link lengths are subject to the condition

(a1 +a2)
2 +a2

3 = a2
4. (30)

This extreme output angular acceleration occurs when the angle ∠BCD = 90◦, see Fig. 3a. Freudenstein
continues in the same paper to state an equation for one extreme output angular acceleration for drag-link
mechanisms, which is given by

θ̈4max =
θ̇ 2

1 a4

a2a3
(a2 +a3), (31)

where the link lengths are subject to the condition

(a2 +a4)
2 +a2

3 = a2
1. (32)

At an extreme output angular acceleration the coupler a2 and fixed base link a4 are parallel and the angle
∠ADC = 90◦, see Fig. 3b. Together, these two conditions further mean that ∠DCB = 90◦. We will verify
both theorems with examples, but also demonstrate that they are incomplete because of the link length
conditions, and only partially correct. In fact, the length conditions can impose a folding singularity on each
linkage type for certain integer values of link lengths, thereby meaning that the linkage will pass through a
singularity as it folds along the base link a4. Moreover, it is important to note that Eqs. (29) and (31) apply
only to these two classes of linkage.
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(a) Folding crank-rocker: a1 = 1, a2 = 2, a3 = 4, a4 = 5.
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(b) Folding drag-link: a1 = 5, a2 = 2, a3 = 4, a4 = 1.

Fig. 3. Configurations where θ̈4max occur.

Table 2. Folding crank-rocker and drag-link mechanism link lengths.

Link Crank-rocker lengths Drag-link lengths

a1 1 5

a2 2 2

a3 4 4

a4 5 1

Let a crank-rocker, where a1 is the crank and a4 is the rocker, be defined by the link lengths that satisfy
Eq. (30), which are listed in Table 2. It turns out that the linkage is a folding drag-link for these lengths. The
angular velocity and acceleration profiles for a constant input angular velocity of θ̇1 = 10 rad/s are illustrated
in Fig. 4, where the folding singularity appears as discontinuities in the profile curves. Substituting the link
lengths and constant input angular velocity θ̇1 = 10 into Eq. (29) predicts that a maximum output angular
acceleration is θ̈4 = 37.5 rad/s2. Freudenstein predicts that this extreme angular acceleration will occur
when links a1 and a2 are parallel and a2 is perpendicular to a3.

Furthermore, let a folding drag-link mechanism, where a1 is the input crank and a4 is the output crank,
be defined by the link lengths that satisfy Eq. (32), which are also listed in Table 2. Substituting the link
lengths and constant input angular velocity θ̇1 = 10 rad/s into Eq. (31) predicts that a maximum output
angular acceleration is θ̈4 = 75 rad/s2. Freudenstein predicts that the extreme angular acceleration for the
drag-link will occur when links a2 and a4 are parallel and a3 is perpendicular to a4. The two linkages were
sketched in AutoCAD, and the input angle where an extreme angular acceleration occurs was measured to
be precisely ±126.86989765◦ for the crank-rocker/drag-link mechanisms, see Fig. 3.

In order to confirm the results for both the crank-rocker and drag-link mechanisms, a method to compute
the extreme output angular accelerations and associated configurations is needed. Hence, the following
algorithm is proposed.
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(a) The θ̇4 = f (θ1) angular velocity profile.
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(b) The θ̈4 = f (θ1) angular acceleration profile.

Fig. 4. The angular velocity and acceleration profiles for the Freudenstein crank-rocker.

Extreme planar 4R angular acceleration algorithm.

If values for a1, a2, a3, and a4 are given and the input angular velocity is a constant specified value, we wish
to determine the critical values θicrit that result in θ̈ jmin/max , so both θ j and θ̇ j must be eliminated from the
position, angular velocity, and acceleration IO equations.

1. Convert vi and vj in the IO equation to angles as v = tan(θ/2) and solve for θ j.

2. Substitute the expression for θ j from Step 1 into the θ̇i-θ̇ j equation and solve for θ̇ j, which gives
θ̇ j = f (θi), since θ̇i is a specified constant.

3. Substitute the expressions for θ j and θ̇ j into the θ̈i-θ̈ j equation.

4. Solve the resulting equation for θ̈ j, which gives θ̈ j = f (θi), since θ̈i = 0.

5. Solve
dθ̈ j

dθi
= 0 for θicrit and determine the values of θ̈ jmin/max corresponding to each distinct value of

θicrit .

If the associated points of inflection are required, then the second derivative,
d2θ̈ j

dθ 2
i

= 0, must be solved for

the critical input angles.

Following the extreme angular velocity and acceleration algorithms for a constant input angular velocity
of θ̇1 = 10 rad/s, and crank-rocker as well as drag-link link lengths listed in Table 2, we obtain the angular
velocity and acceleration profiles for θ̇4 = f (θ1) and θ̈4 = g(θ1) that are illustrated in Figs. 4 and 5. More-
over, the computed values for θ̇4min/max , θ̈4min/max , and the associated θ1crit for the crank-rocker and drag-link
mechanisms are listed in Table 3. It is to be seen that for the crank-rocker, the value for θ̈4max computed with
Freudenstein’s Eq. (29) is indeed correct, as well as the configuration in which it occurs. See the value for
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(b) The θ̈4 = f (θ1) angular acceleration profile.

Fig. 5. The angular velocity and acceleration profiles for the Freudenstein drag-link.

Table 3. Folding crank-rocker and drag-link mechanism angular velocity and acceleration extrema.
Mechanism Assembly mode θ̇4min/max rad/s θ1crit rad (deg) θ̈4min/max rad/s2 θ1crit rad (deg)

Crank-rocker

1

2.573593128
2.951961350

-37.5
-2.214297436

(169.1349266◦) (-126.8698977◦)

-4.301898050
0

10.61385310
2.304690338

(0◦) (132.0490295◦)

2

2.573593128
-2.951961350

37.5
2.214297436

(-169.1349266◦) (126.8698977◦)

1.137464865
0

-10.61385310
-2.304690338

(0◦) (-132.0490295◦)

Drag-link

1

-12.57359315
-2.951961350

-37.5
2.214297436

(-169.1349266◦) (126.8698977◦)

-5.698101962
0

10.61385310
-2.304690338

(0◦) (-132.0490295◦)

2

-12.57359315
2.951961350

37.5
-2.214297436

(169.1349266◦) (-126.8698977◦)

-5.698101962
0

-10.61385310
2.304690338

(0◦) (132.0490295◦)

θ1crit in Assembly Mode 2 in Table 3, which is identical to the empirically measured value in Fig. 3. How-
ever, the remaining extreme value for the output angular acceleration is not accounted for. Additionally, it
is to be seen for the drag-link that the configuration in which an extreme value for θ̈4max is correct, see the
value for θ1crit in Assembly Mode 2 in Table 3, which is the same as the empirically measured value in Fig. 3.
However, the value for the maximum angular acceleration is not correct, it is twice the computed value, see
the results listed in Table 3. The values computed with the angular velocity and acceleration extrema algo-
rithms yield results that agree with the plotted angular velocity and acceleration profiles illustrated in Figs. 4
and 5.
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3. ANGULAR VELOCITY FUNCTION GENERATOR DIMENSIONAL SYNTHESIS

The previous sections demonstrated that the angular velocity and acceleration extrema in a mechanism
may be computed using any of the six vi-vj algebraic IO equations and the two algorithms. To do so, the
desired output needed to be expressed as a function of only the input angle, e.g. θ̇ j = f (θi) and θ̈ j = g(θi),
where f and g represent the functions. This suggests, as Freudenstein mentioned in [8], that one may
synthesise a four-bar linkage with prescribed velocity or acceleration characteristics. Let a desired angular
velocity profile be expressed as

θ̇4 = tan
(

v1

1+ v2
1

)
, 1 ≤ v1 ≤ 3. (33)

We will demonstrate with an example using exact function generation dimensional synthesis, though the

.

(a) IO curve in the v1-θ̇4 plane.

.

(b) IO curve in the θ1-θ̇4 plane.

Fig. 6. Synthesised angular velocity function IO curves.

continuous approximate dimensional technique [2] may also be used. We select our three input angle pa-
rameters to be v1 = 1, 2, 3. The corresponding output angular velocities which satisfy the function are θ̇4 =
2.546302490, 2.422793219, 2.309336250 rad/s. We select a constant input angular velocity of θ̇1 = 10 rad/s
and use Eq. (18), the θ̇1-θ̇4 IO equation, as our synthesis equation. We identify the v4 that correspond to
our selected values of v1 by solving Eq. (3), the v1-v4 IO equation, for v4. These values are substituted into
Eq. (18) generating three synthesis equations in terms of the unknown link lengths a1, a2, a3, a4. Since this
is a function generation problem the scale of the linkage is arbitrary. Without loss of generality, we set a4 = 1
and obtain the link lengths listed in Table 4. The resulting angular velocity profile is illustrated in Fig. 6.
We define the structural error as the common area between the curves, which for Fig. 6a is 0.017595114.

Table 4. Velocity function generator identified link lengths.

a1 = 0.1316240266 a2 = 0.5005860676 a3 = 0.5968439840 a4 = 1
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4. CONCLUSIONS

In this paper we presented the six planar 4R four-bar mechanism vi-vj algebraic IO equations, one for each
distinct pair of the relative angles between the links, and their first two time derivatives. Novel algorithms
for computing the extreme values of output angular velocity and acceleration for a specified constant input
angular velocity were also proposed. To compute the extrema, the velocities and accelerations must be
expressed as functions of only the input angle parameter. Freudenstein’s output angular acceleration extrema
criteria for crank-rocker and drag-link mechanisms were evaluated and shown to be only partially correct,
as well as incomplete. Finally, an example of angular velocity function generation synthesis was presented.
The authors believe this is the very first such example to be found in the literature.
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