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ABSTRACT
This paper presents the derivation of a dynamic model for a multi-body LTA (Lighter-than-air) vehi-

cle consisting of a helium filled envelope and a movable gondola. The airship’s mathematical model was
derived by applying the Boltzmann-Hamel equations, which is used for systems described in terms of quasi-
velocities. The derived equations of motion are presented for the simplified case pertaining to only to the
airship’s lateral motion. The fidelity of the derived model was exhibited by constructing an experimental
setup which involved imposing external forces on the physical model and comparing the responses of both
the physical and derived models.

Keywords: Dynamic Modelling; Boltzmann-Hamel; Airship; UAV; Multi-body.

MODÉLISATION DYNAMIQUE ET VALIDATION EXPÉRIMENTALE D’UN DRONE
MULTICORPS

RÉSUMÉ
Cet article présente la dérivation d’un modèle dynamique pour un véhicule multi-corps plus léger que l’air

composé d’une enveloppe remplie d’hélium et d’une nacelle mobile. Le modèle mathématique du dirigeable
a été dérivé en appliquant les équations de Boltzmann-Hamel, qui sont utilisées pour les systèmes décrits
en termes de quasi-vitesses. Les équations du mouvement sont présentées pour un cas simplifié concernant
uniquement les mouvements latéraux du dirigeable. La fidélité du modèle dérivé a été démontrée par la
construction d’un montage expérimental : l’application de forces externes sur le système physique a permis
de comparer les réponses du système physique et du modèle dérivé.

Mots-clés : Modélisation dynamique ; Boltzmann-Hamel ; Dirigeable ; Drone ; Multi-corps..
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1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), namely airships, have been widely adopted in recent years due to
their ability to perform a variety of automated tasks. A key advantage of LTA aircraft is their ability to
remain airborne for extended periods of time without requiring frequent refueling, making them ideal for
tasks that require long-duration flights, such as aerial surveillance and monitoring. Another advantage of
LTA UAVs is their ability to carry heavy payloads over long distances. Additionally, LTA UAVs can be
used as a platform for communication equipment, such as radios and cellular networks, which is useful in
areas where traditional communication infrastructure may be lacking. To optimize the mentioned benefits
regarding UAVs, it is essential to derive a vehicle dynamic model that blends theoretical principles with
experimental data to precisely depict the system’s dynamics.

The two primary approaches of dynamic modelling in classical mechanics are the Lagrangian and Newton-
Euler mechanics. The Lagrangian approach utilizes the difference between the system’s kinetic energies,
while the Newton-Euler approach involves applying Euler’s laws of rigid body dynamics to the system’s
translational and rotational dynamics [1]. Due to the resurgence of LTA airships in recent years, vehicles
modelled using the Newton-Euler approach [2–4] and the Lagrangian approach [5, 6] have been thoroughly
studied and aided in the advancement of airship modelling. Numerous dynamic models have been developed
for single-body conventional airships and can be found in the literature. However, the literature contains only
a limited number of dynamic models for multi-body unmanned airships. One of the primary obstacles en-
countered when modelling multi-body airships is accommodating for non-holonomic constraints, which are
non-integrable constraints on the motion and/or non-integrable quasi-velocities which require the use of La-
grange multipliers when using Lagrange’s equations [7]. The Boltzmann-Hamel equations can be directly
applied to system with non-integrable constraints or quasi-velocities [8].

The airship presented in this investigation is a multi-body consisting of a helium filled envelope and a re-
configurable gondola housing the motors for actuation of the airship. The gondola slides on a rail attached
to the envelope, which allows it to control the pitch attitude of the airship as desired. The derived model will
be used to train a controller utilized to govern the airship’s lateral behaviour.

This paper is presented as follows. The individual terms of the Boltzmann-Hamel equations are derived,
and the airship’s equations of motion are then developed. Then, an experimental setup for the model’s
validation is described. Finally, a conclusion of the results and the effectiveness of the model are discussed.

2. MULTI-BODY MODELLING

To model the multi-body LTA aircraft, some assumptions must be stated beforehand.

• The airship’s center of volume (CV) and center of buoyancy (CB) are assumed to be coincident.

• The airship’s added mass and inertia due to the large volume of air displaced are considered.

• The airship’s body is assumed to be rigid with a constant volume, therefore any aeroelastic effects
will be neglected.

2.1. Kinematics
The prototype is composed of two bodies, the blimp and the gondola. The blimp consists of an envelope,

helium, rail and fins. The blimp’s mass is denoted by m1, the gondola’s mass is denoted by m2, and the total
mass which is the summation of both m1 and m2, is denoted by mt . Often in multi-body systems, the body
axis is located at the centre of volume CV , which is static when constant volume is assumed, as opposed
to a vehicle’s total center of gravity CG, which position depends on the location of each body present in a

2023 CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium 2



Fig. 1. Airship Coordinate System

multi-body. This paper adapts a different approach for the body axis center location, reason being is that
this research concerns the lateral motion of a multi-body UAV. Since the gondola is only used to govern the
longitudinal behaviour of the airship, the gondola’s position will remain constant. Maintaining the gondola’s
CGg position throughout an experiment would cause the vehicle’s total CGv to be fixed throughout flight,
deeming the CGv an appropriate location for the body frame’s axis origin. As seen in Figure 1, the body
frame is attached to the multi-body’s mt centre of gravity rather than the center of volume CV . Both the body
reference frame [Xb Yb Zb] and the inertial reference frame [Xi Yi Zi] adhere to a North-West-Up directional
convention. The generalized coordinates expressed in the inertial frame are:

q⃗ = [x y z φ θ ψ Sg]T (1)

The generalized coordinates (φ , θ , ψ) seen in (1) are known as Euler angles, namely roll φ , pitch θ , and
yaw ψ . Euler angles can be used to describe any of the airship’s body rotations relative to an either inertial
or body frame of reference [9]. A rotation matrix can be developed to transform coordinates from the
body frame to the inertial frame, by setting up intermediate reference frames. Information on the rotation
matrices’ development can be found in Appendix A. The resulting transformation matrices are:

E
BR1 =

cos(ψ)cos(θ) cos(ψ)sin(φ)sin(θ)− cos(φ)sin(ψ) sin(φ)sin(ψ)+ cos(φ)cos(ψ)sin(θ)
cos(θ)sin(ψ) cos(φ)cos(ψ)+ sin(φ)sin(ψ)sin(θ) cos(φ)sin(ψ)sin(θ)− cos(ψ)sin(θ)

−sin(θ) cos(θ)sin(φ) cos(φ)cos(θ)

 (2)

R2 =

1 0 −sin(θ)
0 cos(φ) sin(φ)cos(θ)
0 −sin(φ) cos(φ)cos(θ)

 (3)
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Combining (4), the kinematic loop closure equation, and (5), the summation of moments, yields a relation
that associates both the blimp and the gondola’s centers of gravity to the airship’s center of gravity CGv, in
the inertial frame. r⃗1 is the vector from the vehicle’s CG to the blimp’s CG, and r⃗2 is the vector from
the vehicle’s CG to the gondola’s CG. r⃗zg is the vector from the blimp’s CG to the gondola’s CG in the Z
direction, and r⃗xg is the vector from r⃗zg to the gondola, in the X direction, thus completing the loop.

r⃗1 + r⃗zg + r⃗xg = r⃗2 (4)

r⃗1m1 + r⃗2m2 = 0 (5)

Since the relationship between the different CG′s and CV is in the inertial frame, R1 must be multiplied
into the vectors, thus yielding: r1x

r1y

r1z

+R1

 0
0

−zg

+R1

xg

0
0

=

r2x

r2y

r2z

 (6)

r⃗zg = R1
[
0 0 −zg

]T
= zg

−(sin(φ)sin(ψ)+ cos(ψ)sin(θ)cos(φ))
−(cos(φ)sin(ψ)sin(θ)− cos(ψ)sin(φ))

−cos(φ)cos(θ)

 (7)

r⃗xg = R1
[
xg 0 0

]T
= xg

cos(ψ)cos(θ)
cos(θ)sin(ψ)

−sin(θ)

 (8)

Substituting equations (7) and (8) into (4) and solving equations (4) and (5) simultaneously produces the
following results:

r1x = m2
ax

(m1 +m2)
(9)

r1y =−m2
ay

(m1 +m2)
(10)

r1z = m2
az

(m1 +m2)
(11)

r2x =−m1
ax

(m1 +m2)
(12)

r2y = m1
ay

(m1 +m2)
(13)

r2z =−m1
az

(m1 +m2)
(14)
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where the coefficients a are a function of the position of both the envelope and gondola’s CG , and can be
found in full in Appendix B.

The blimp has a rail where the gondola is mounted onto, which consists of a straight rail segment and a
curved rail segment, as observed in figure 2.

Fig. 2. Gondola on Curved Rail

The gondola’s position can defined by two variables, xg and zg, that are both functions of the gondola’s
position on the rail, Ss.

xg =

Ss for, −0.6 ≥ Ss ≥ 0.3

drx + sin
(

Ss −drx

Rcurve

)
Rcurve for, 0.3 < Ss ≤ 2.14

(15)

zg =


l for, −0.6 ≥ Ss ≥ 0.3√

(Rcurve)2 −
(

sin
(

Ss −drx

Rcurve

)
Rcurve

)2

for, 0.3 < Ss ≤ 2.14
(16)

Equation (15) shows that the value of xg is equal to the position of the gondola on the rail, Ss, until the
gondola is on the curved section, where xg is defined by a function that accounts for the curvature of the rail.
Similarly, equation (16) displays how zg is equal to l, the vertical distance between the airship’s CGv and the
gondola’s CGg, until the gondola is on the curved section of the rail, where zg is also defined by a function
that accounts for the curvature of the rail. Table 1 contains the other variables seen in Figure 2.
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Symbol Parameter Value

drx
Distance between the center of the circumference and the
origin of the body frame, along the x axis

0.3 m

l
Distance between the total CG and the gondola CG, along
the z axis

0.94 m

R Radius of the curve 0.9 m
rw Rail thickness + added material 0.045 m

Table 1. Gondola-Rail Parameters

2.2. Mass Matrix
The blimp’s mass m1 described in equation (17) is the sum of the envelope, helium, rail and fins’ masses.

m1 = menvelope +mhelium +mrail +m f ins (17)

The gondola’s total mass m2, consists of the gondola, which includes all onboard electronics and thrusters,
and the added counterweight maddedCW which is used to balance the bouyancy force caused by the helium.
Therefore this mass value will vary depending on how much added mass is required to maintain the blimp
in a buoyant state.

m2 = mgondola +maddedCW (18)

The airship’s total mass is given by:
mt = m1 +m2 (19)

The 6x6 mass matrix for the airship can be expressed:

M =

[
Ma 0
0 Ja

]
(20)

where Ma and Ja are both 3x3 matrices.
Any fluid surrounding a body in motion is to be displaced, in that body’s direction of motion [10]. For

airships, the resisting air’s mass and inertia can be accounted for by adding virtual, or added, mass and
inertia terms, to account for this phenomenon.

Ma =

mx 0 0
0 my 0
0 0 mz

 (21)

Ja =

 Jx 0 Jxz

0 Jy 0
Jxz 0 Jz

 (22)

mx = (1+ k1)(m1 +m2) (23)

my = mz = (1+ k2)(m1 +m2) (24)

Jx = IBx + IGx (25)
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Jy = (1+ k′)(IBy + IGy) (26)

Jz = (1+ k′)(IBz + IGz) (27)

Jxz = (IBxz + IGxz) (28)

Ma and Ja are mass and inertia matrices that account for the system’s total mass and inertia in addition
to the calculated added mass and inertia, respectively. In rectilinear motion ,the effect of added mass and
inertia is equivalent to k times the mass of the displaced fluid [11]. These added terms have been calculated
by utilizing Lamb’s coefficients, that estimate the added mass to an ellipsoid in the axial k1, transverse k2,
and rotational k′ directions of motion.

M =



mx 0 0 0 0 0
0 my 0 0 0 0
0 0 mz 0 0 0
0 0 0 Jx 0 Jxz

0 0 0 0 Jy 0
0 0 0 Jxz 0 Jz

 (29)

Symbol Parameter Value Units
m1 Blimp’s Mass 2.66 kg
m2 Gondola’s Mass 3.3 kg
k1 Lamb’s Inertia Ratio in the Axial Direction 0.1664 −
k2 Lamb’s Inertia Ratio in the Lateral Direction 0.69 −
k′ Lamb’s Inertia Ratio about the Vertical Axis 0.3364 −
IBx Blimp’s Moment of Inertia about the X Axis 0.87 kg m2

IBy Blimp’s Moment of Inertia about the Y Axis 3.72 kg m2

IBz Blimp’s Moment of Inertia about the Z Axis 3.72 kg m2

IGx Gondola’s Moment of Inertia about the X Axis 0.136 kg m2

IGy Gondola’s Moment of Inertia about the Y Axis 0.15 kg m2

IGz Gondola’s Moment of Inertia about the Z Axis 0.15 kg m2

IBxz Blimp’s Moment of Inertia about the X-Z Plane 0 kg m2

IGxz Gondola’s Moment of Inertia about the X-Z Plane 0 kg m2

Table 2. Mass Matrix Parameters

2.3. Dynamics
2.3.1. Kinetic Energy

The airship’s total Kinetic Energy T (⃗q̇, q⃗, t) can be defined as:

T = T1 +T2 +Ta (30)

Kinetic energy requires true velocities that are based on the generalized coordinates that represent the
vehicle’s position relative to an inertial frame [12]. Therefore, body-fixed velocities such as (p,q,r) are not
acceptable. The three kinetic energy sources to be considered are the translational kinetic energy T = 1

2 m⃗v2
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from the blimp and gondola’s CG’s to the vehicle’s CGv, the rotational kinetic energy T = 1
2 Iω⃗2 from the

blimp CG to the vehicle’s CGv, and finally the total (translational and rotational) kinetic energy from the
vehicle’s CGv, which includes the added mass and inertia, to the earth frame.

T1 =
1
2

˙⃗r1
T

m1
˙⃗r1 +

1
2

I1ω⃗
2 (31)

where I1 is a 3x3 matrix consisting of the envelope’s moments of inertia, ω⃗ is a vector of the angular
velocities, and T1 is the kinetic energy due to the relative translational and rotational motion between m1 and
the vehicle’s CGv.

T2 =
1
2

˙⃗r2
T

m2
˙⃗r2 +

1
2

I2ω⃗
2 (32)

T2 is the kinetic energy due to the relative motion between m2 and the vehicle’s CGv. Ta is the kinetic
energy due to the velocity contribution of m1, m2 and the added mass relative to the inertial frame.

Ta =
1
2

V⃗T MV⃗ (33)

The velocity contributions with respect to the inertial frame for m1, m2 and the added mass are included
in Ta, by utilizing the mass matrix M to account for them, by adding 1 to the Lamb coefficients, as can be
seen in equations (23) - (27). V⃗ is a velocity matrix that includes the linear velocities v⃗ = [ẋ ẏ ż]T and the
angular velocities ω⃗ = [φ̇ θ̇ ψ̇]T .

2.3.2. Potential Energy
The airship’s total potential energy U is the sum of the blimp and gondola’s potential energies, denoted

by U1 and U2, respectively.

U =U1 +U2 (34)

U1 is the potential energy of the blimp’s mass m1 less the mass of the displaced air mair.

U1 = g(m1 −mair)(z− r1z) (35)

The blimp is designed to operate at a low altitude of approximately 122 meters [13]. To calculate the
air pressure and mass, certain assumptions were made, including an atmospheric temperature of 20◦C, a
decrease in air density ∆ρ =−1.164e−4 kg/m4, and that the airships volume V remains constant [8]. For a
given altitude z, the air’s density can be estimated by:

ρair = ρre f −∆ρ∆z (36)

where ρre f is the air density at the reference altitude zre f . At the reference altitude, mair = ρreFV = mt , and
a relation describing the air’s mass as relative to the vehicle’s mass can be expressed as:

mair =
ρre f −∆ρ∆z
ρre f −∆ρzre f

mt (37)

The gondola’s potential energy can be computed as:

U2 = gm2(z− r2z) (38)

Finally, the system’s total potential energy is

U = g((m1 −mair)(z− r1z)+m2(z− r2z)) (39)
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2.4. Quasi-Velocities
Typically in UAVs, the angular velocities are represented by body frame velocities ω , rather than rate of

change of Euler angles (φ̇ , θ̇ , ψ̇) [8]. These quasi-velocities us are non-integrable, such that if they were,
they would be true velocities q̇s.

The transformation relating us and q̇s in an unconstrained system [12] can be seen in Equation (40)

uj =
n

∑
i=1

Ψ ji(q, t)q̇i ( j = 1, ...,n) (40)

where n is the number of degrees of freedom in the system. Ψ ji is a (n× n) matrix that transforms the
derivatives of the generalized coordinates into the quasi-velocities. Furthermore, Φi j = Ψ

−1
ji , resulting in the

inverse relationship:

q̇i =
n

∑
j=1

Φi j(q, t)u j (i = 1, ...,n) (41)

A detailed derivation of the quasi-velocities can be found in Appendix C
The matrix transforming true velocities to quasi-velocities can now is defined as:

Ψ ji(q, t) =



cos(q6)cos(q5) sin(q6)cos(q5) −sin(q5) 0 0 0 0
b1 b2 cos(q5)sin(q4) 0 0 0 0
b3 b4 cos(q5)cos(q4) 0 0 0 0
0 0 0 1 0 −sin(q5) 0
0 0 0 0 cos(q4) cos(q5)sin(q4) 0
0 0 0 0 −sin(q4) cos(q5)cos(q4) 0
0 0 0 0 0 0 1


(42)

b1 = cos(q6)sin(q5)sin(q4)− sin(q6)cos(q4) (43)

b2 = sin(q6)sin(q5)sin(q4)+ cos(q6)cos(q4) (44)

b3 = cos(q6)sin(q5)cos(q4)+ sin(q6)sin(q4) (45)

b4 = sin(q6)sin(q5)cos(q4)− cos(q6)sin(q4) (46)

2.5. Aerodynamics
The aerodynamic terms used for this model have been derived from numerical simulations [14].

2.6. Boltzmann-Hamel
The dynamics of a system can be defined by the Lagrangian:

L = T −U (47)

which utilizes the system’s energies rather than its forces [1]. When dealing with a system that involves
quasi-velocities, applying the Lagrangian approach in a straightforward manner will not yield accurate equa-
tions, therefore the Lagrangian must be redefined as:

L∗(q,u, t) = L(q, q̇, t) (48)
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As previously stated, the dynamic model for this system concerns the lateral behaviour of the multi-body,
and for that the gondola’s motion will be restricted. To develop a lateral model, θ was set to zero, and the
value of z was held constant at the reference altitude aforementioned. This results in a model that captures the
airship’s lateral dynamics while maintaining a 3D mathematical model. Restraining the gondola’s motion
overcomes the non-holonomic nature of the multi-body. allowing for the use of the generalized Boltzmann-
Hamel equation:

d
dt

(
δL
δur

)
−

n

∑
i=1

(
δL
δθr

)
+

n

∑
j=1

n

∑
l=1

δL
δu j

γ
j

rlul = Qr (r = 1, ...,n) (49)

where n is the number of degrees of freedom, θr are the generelized coordinates, and γ
j

rl is the hamel
coefficient defined by:

γ
j

rl(q) =−γ
j

lr =
n

∑
i=1

n

∑
k=1

(
δΨ ji

δqk
−

δΨ jk

δqi

)
(50)

The results of the Boltmann-Hamel equation are lengthy and not presented, but were obtained by solving
for the system’s kinematics r⃗1 and r⃗2, computing the mass matrix M, and then calculating the system’s dy-
namics. Once that has been achieved, the equations were simplified for the lateral case, and the Lagrangian
was expressed in quasi-velocities. Finally, the terms in the Boltzmann-Hamel equations were computed and
summed, and then solved for the lateral set of equations of motion ẍ, ÿ, φ̈ and ψ̈ .

3. EXPERIMENTAL VALIDATION

To validate the derived dynamic model, an experiment was carried out indoors. The experiment is per-
formed in open loop with no control actuation. Forces are applied to the multi-body by hand using a load
cell. The load cell measures the magnitude of the applied force and stores it. A description of the load cell
will be given later. The trajectory of the multi-body is then traced using OptiTrack motion capture system.
The motion capture system consists of 20 synchronized cameras that locate the position of traced bodies
using triangulation. Triangulation requires attaching reflectors on traced bodies. Over 20 reflectors were
attached to the blimp while the gondola had 10 reflectors (Figure3).

Fig. 3. Multi-body is depicted inside the workspace during experiment set up.
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Knowing the magnitude of the applied forces as a function of time and the initial conditions of the multi-
body allow simulating the experiment using the model derived earlier. Trajectory produced by simulation is
then compared with the experimental data acquired by the motion capture system.

3.1. Experiment Layout
The envelope was filled with helium which resulted in buoyancy force that lifted the multi-body. To

maintain a fixed altitude of the multi-body, calibration weights were added manually on top of the gondola.
Forces were applied to the blimp for 1.2 seconds. The forces were applied away from CG of the blimp which
yielded a yawing moment about z-axis. Owing to workspace limitations, the duration of the experiment was
only 5 seconds.

3.2. Description of Load Cell Device
In order to simulate the experiment described earlier, it is necessary to record the sequence of applied

forces. The time history of the applied force was measured using a load cell [15]. The load cell is powered
by a 9V battery and produces an analog signal between 0.5-5V. For reading and storing the output signal,
the load cell was connected to Arduino Mega 2560. Moreover, the load cell requires a mount in order to be
conveniently used in an experiment. A hinged arm was designed to convey the applied force to the load cell
while ensuring that the friction at the hinge is minimal. The mount, Arduino, and load cell are depicted in
Figure 4.

After assembling the load cell device, calibration was performed by placing calibration weights on the
load cell and reading the output voltage. Repeating this process using multiple weights yields a relationship
between voltage and force which can be represented faithfully with a linear fit (Figure4).

During the experiment, data was stored on Arduino’s EEPROM by first setting all bytes to zero followed
by storing the signal received from the load cell (through designated analogue pins). Finally, data was
retrieved from Arduino and converted from bytes to physical values, i.e., voltage.

Arduino Mega 2560 Hinged arm
Load cell

Force application

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 4. Load cell device used to measure the applied force (left). Load cell calibration, showing a linear relationship
between voltage and force (right)
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3.3. Results and Discussion
The experiment conducted to evaluate the veracity of the derived dynamic airship model comprised of an

external force applied onto the airship. The initial position of the multi-body was −0.86 m and 0.69 m in the
axial and lateral directions, respectively. The applied forces are depicted in Figure 5.

E = ||(PB)Simulation − (PB)Experiment ||2 + ||(PG)Simulation − (PG)Experiment ||2 (51)

ERMS =
√

E (52)

where PB and PG are, respectively, the blimp and gondola’s positions, ERMS is the root mean squared error,
and E is the mean squared error. Examining Figure 5, it is observed that there is a discrepancy in the
gondola’s trajectory. The position error between the experiment and simulation is calculated using (52),
and was found to be 0.23 m. This error represents the total distance discrepancy between the simulation
output and experimental data. This disparity of positional accuracy can be attested to the estimated inertial
values, particularly the added mass and inertia terms. Nonetheless, the behaviour of the simulated model is
consistent with the empirical results. To improve the model’s accuracy, system identification can be applied
to the physical prototype, to acquire the airship’s added mass and inertia values.

0 0.2 0.4 0.6 0.8 1 1.2
-0.5

0

0.5

1

1.5

2

2.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Fig. 5. Position of blimp and gondola based on the experiment and simulation (left). Components of applied forces
(right).

4. CONCLUSIONS

The focus of this paper was the derivation of a dynamic model for the lateral motion of a multi-body
unmanned airship, achieved through the use of Boltzmann-Hamel equations. The presented model was then
verified through experimental validation, which yielded promising results that can be improved by using
more accurate parameters acquired by system identification. Although the paper only presents a simplified
version of the model, the approach described can be readily implemented to the complete dynamic model of
the airship or any other multi-body vehicle.
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APPENDIX

A. DERIVING THE TRANSFORMATION MATRICES

First, a rota tion about the x-axis with an angle of φ occurs, shifting the y and z axes from the body axis
frame to a new axis, intermediate frame 1, and is denoted by Rx. Then, there is a rotation of θ about the
y-axis, traversing the current axis into intermediate frame 2, denoted by Ry. Finally, denoted by Rz, there is
a rotation of ψ about the z-axis, shifting the axis system into its final axis, the inertial frame.

1
BRx(φ) =

1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

 (53)

2
1Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 (54)

E
2 Rz(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (55)

To compute the rotation matrix R1, the product of all the angle rotations must be computed, such that:

E
BR1 =

E
2 Rz(ψ)2

1Ry(θ)
1
BRx(φ) (56)

Solving 56,

E
BR1 =

cos(ψ)cos(θ) cos(ψ)sin(φ)sin(θ)− cos(φ)sin(ψ) sin(φ)sin(ψ)+ cos(φ)cos(ψ)sin(θ)
cos(θ)sin(ψ) cos(φ)cos(ψ)+ sin(φ)sin(ψ)sin(θ) cos(φ)sin(ψ)sin(θ)− cos(ψ)sin(θ)

−sin(θ) cos(θ)sin(φ) cos(φ)cos(θ)


(57)

Equation (57) can be used to convert coordinates from the body to the earth reference frame, and its inverse
R−1

1 can be used to convert from the earth to the body reference frame.
The matrix R1 deals with converting coordinates from the body frame to coordinates in the earth frame. In

order to convert angular velocities in the inertial frame
[
φ̇ θ̇ ψ̇

]T to angular velocities in the body frame[
p q r

]T , a rotation matrix R2 is introduced.p
q
r

= R2

φ̇

θ̇

ψ̇

 (58)

From deriving R1, Rx, Ry and Rz have already been calculated. For Rx(φ), the only rotation occurs in φ̇ , such
that

1
B ω

B = 1
B ω

1 =

φ̇

0
0

 (59)

Similarly,

2
1 ω

2 = 2
1 ω

1 =

0
θ̇

0

 (60)
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E
2 ω

E = E
2 ω

2 =

0
0
ψ̇

 (61)

Then,

E
B ω

B = 1
B ω

B + 2
1 ω

B + E
2 ω

B (62)

Expanding, p
q
r

= E
B ω

B = 1
B ω

B + 1
BRT

x
2
1 ω

B + 1
BRT

x
2
1RT

y
E
2 ω

B (63)

Solving,p
q
r

=

φ̇

0
0

+

1 0 0
0 cosφ sinφ

0 −sinφ cosφ

0
θ̇

0

+

1 0 0
0 cosφ sinφ

0 −sinφ cosφ

cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

0
0
ψ̇

 (64)

p
q
r

=

 φ̇ − ψ̇sin(θ)
θ̇cos(φ)+ ψ̇sin(φ)cos(θ)
−θ̇sin(φ)+ ψ̇cos(φ)cos(θ)

=

1 0 −sin(θ)
0 cos(φ) sin(φ)cos(θ)
0 −sin(φ) cos(φ)cos(θ)

φ̇

θ̇

ψ̇

 (65)

Such that,

R2 =

1 0 −sin(θ)
0 cos(φ) sin(φ)cos(θ)
0 −sin(φ) cos(φ)cos(θ)

 (66)

As mentioned, R2 converts generalized velocities from the earth frame to the body frame, and the inverse
of this matrix, R−1

2 , does the opposite.

R−1
2 =

1 sin(φ)tan(θ) cos(φ)tan(θ)
0 cos(φ) −sin(φ)
0 sin(φ)/cos(θ) cos(φ)/cos(θ)

 (67)
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B. KINEMATIC COEFFICIENTS

ax = cos(ψ)sin(θ)cos(φ)zg + sin(φ)sin(ψ)zg − cos(ψ)cos(θ)xg (68)

ay =−sin(θ)cos(φ)sin(ψ)zg + cos(ψ)sin(φ)zg + cos(θ)sin(ψ)xg (69)

az = cos(φ)cos(θ)zg + sin(θ)xg (70)
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C. QUASI-VELOCITIES

For the presented airship, quasi-velocities u1→3 can be obtained by multiplying the transformation matrix
R−1

1 by the derivatives of the generalized coordinates q1→3

u1 = [cos(ψ)cos(θ)]ẋ+[sin(ψ)cos(θ)]ẏ− sin(θ)ż (71)

u2 = a1ẋ+a2ẏ+a3ż (72)

u3 = a4ẋ+a5ẏ+a6ż (73)

a1 = cos(ψ)sin(θ)sin(φ)− sin(ψ)cos(φ) (74)

a2 = sin(ψ)sin(θ)sin(φ)+ cos(ψ)cos(φ) (75)

a3 = sin(φ)cos(θ) (76)

a4 = cos(ψ)sin(θ)cos(φ)+ sin(ψ)sin(φ) (77)

a5 = sin(ψ)sin(θ)cos(φ)− cos(ψ)sin(φ) (78)

a6 = cos(φ)cos(θ) (79)

Similarly, quasi-velocities u4→6 are obtained by multiplying the transformation matrix R2 by the time
derivatives of q4→6.

u4 = φ̇ − sin(θ) ψ̇ (80)

u5 = cos(φ) θ̇ + cos(θ)sin(φ) ψ̇ (81)

u6 =−sin(φ) θ̇ + cos(θ)cos(φ) ψ̇ (82)

In this examination, the gondola’s position is to remain constant as the work focuses on the lateral stability
of the airship, where motion by the gondola is not required. Hence,

u7 = Ṡs = 0 (83)
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