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ABSTRACT
This paper follows our recent work that incorporates the shape of a bounded object in formulating the

distance between two positions of the object as well as interpolating motions between them. In this paper,
we show that such a shape-dependent interpolating motion can be applied recursively in the framework of de
Casteljau algorithm for the generation of Bézier-like freeform motions. Examples are presented to illustrate
the effect of the object and the weight factors on the path of the resulting Bézier-like motions.

Keywords: Shape-dependent distance measure; de Casteljau algorithm; motion interpolation, Bézier mo-
tion.

UN ALGORITHME DE DE CASTELJAU POUR GÉNÉRER DES MOUVEMENTS PLANAIRES
DE FORME LIBRE DÉPENDANT DE LA FORME D’UN OBJET

RÉSUMÉ
Cet article fait suite à nos travaux récents qui intègrent la forme d’un objet délimité dans la formulation

de la distance entre deux positions de l’objet ainsi que les mouvements d’interpolation entre eux. Dans
cet article, nous montrons qu’un tel mouvement d’interpolation dépendant de la forme peut être appliqué
récursivement dans le cadre de l’algorithme de de Casteljau pour la génération de mouvements de forme
libre de type Bézier. Des exemples sont présentés pour illustrer l’effet de l’objet et des facteurs de poids sur
la trajectoire des mouvements de type Bézier résultants.

Mots-clés : Mesure de distance dépendante de la forme ; algorithme de Casteljau ; interpolation de mouve-
ment, mouvement de Bézier.

2023 CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium 1



1. INTRODUCTION

Kinematic theories such as rigid transformations, Lie Groups, and quaternions are mostly concerned with
motions of unbounded infinite spaces and their trajectories traced out by idealized geometric elements such
as points, lines and planes. When dealing with practical kinematic problems, however, there is often a
strong interplay between object shape and motion and thus the need for taking into account some aspects
of the object shape and size, not just the position and orientation of the moving space that contains the
object. For example, motion animation in computer graphics is concerned with the visual representation of
the deformation and movement of objects with bounded shapes and sizes. Swept volume analysis, which
plays a key role in NC tool motion simulation and collision avoidance in robot motion planning, is another
example where the outcome is determined by a combination of a rigid-body motion and the shape and size
of an object.

Kazerounian and Rastegar [1–3] were the first to consider the notion of “object norm" as the average dis-
tance of all points of a moving object between two positions. In this way, they obtain a distance function that
includes not only the distance of translation, the angle of rotation but also the area moments of inertia. This
concept of object shape-dependent distance measure was recently extended and adapted to the development
of planar motion interpolants between two object positions where the area moments of inertia of the object
contribute to the path of the resulting motion [4].

The purpose of this paper is to show that such a shape-dependent interpolating motion can be applied re-
cursively in the framework of the de Casteljau algorithm for the generation of Bézier-like freeform motions.
Examples are presented to illustrate the effect of the object and the weight factors on the path of the result-
ing Bézier-like motions. The research described in this paper can therefore be considered as an extension
of methods in the field of Computer Aided Geometric Design (or CAGD) to freeform motion generation in
kinematics. To this end, Shoemake [5] was the first to develop the so-called “spherical-linear interpolation"
or Slerp by extending the notion of linear interpolation to a unit hypersphere defined by unit quaternions
of SO(3). He then combined Slerp with the de Casteljau algorithm to generate a Bézier-like curve on the
hypersphere that corresponds to a spherical Bézier motion. Kim et al. [6] extended Shoemake’s work to
include higher order derivatives. This scheme was later extended to dual quaternions for generating dual
hyperspherical curves for the generation of spatial Bézier motions [7]. Ge and Ravani [8] provided a formu-
lation for designing rational Bézier motions using dual quaternions. This was extended to rational B-spline
motions in [9–11]. A comprehensive review for rational motion design can be found in [12]. Another school
of thought for combining CAGD with motion synthesis is to use exponential coordinates of Lie groups in-
stead of quaternions and dual quaternions [13–16]. None of these works, however, took into account the
object shape in motion generation.

The organization of the paper is as follows. Section 2 reviews the concept of shape-dependent distance
measure. Section 3 presents shape-dependent motion interpolants for two positions of an object with a
shape parameter. Section 4 shows how de Casteljau algorithm can be combined with shape-dependent
motion interpolants to generate Bézier-like freeform motions. Section 5 presents two examples to illustrate
the properties of the resulting motions.

2. SHAPE-DEPENDENT DISTANCE MEASURE

Consider a simply connected planar object with an arbitrary shape (Figure 1). Let Iu, Iv denote the area
moments of inertia along the principal directions. It has been shown in [4] that for planar displacements,
the shape-dependent distance measure introduced in [1] depends only on Iu, Iv and not on the detailed shape
of the object. In this way, when studying shape-dependent distance, we can consider any simply connected
planar object to be equivalent to the inertia ellipse defined by Iu and Iv.

Now consider two positions of an object shown in Figure 2. Let O1U1V1 and O2U2V2 be the principal
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Fig. 1. A planar object and its inertia ellipse.

Fig. 2. Two positions of a planar object along with an interpolated position with its PCF. Note that the object shape is
not limited to ellipse and can be of any simply connected shape.

coordinate frames of the object at its initial and final positions. The relative displacement of O2U2V2 with
respect to O1U1V1is defined by the vector d = (du,dv) connecting the two positions of the centroid of the
ellipse and the angle between the axes U1 and U2 is denoted as θ . The average distance between all points
of the object at the two given positions is defined as [1, 2]:

D2 =
1
S

∫∫
S
(∆u2 +∆v2)dS (1)

where S is the total area of the object, dS is an infinitesimal element of area and ∆u,∆v are the displacements
of dS in U1 and V1 directions, respectively.

Let ku and kv (ku ≤ kv) be the radii of gyration, i.e.,

Iu = k2
uS, Iv = k2

vS. (2)

It has been shown in [4] that the distance measure (1) reduces to:

D2 = d2 +4k2 sin2 θ

2
, where d2 = d2

u +d2
v , k2 = k2

u + k2
v . (3)

Let a and b (a ≥ b) be the length of semi-major and semi-minor axis of the inertia ellipse. The radii of
gyration for the ellipse can be expressed as:

ku =
b
2
, kv =

a
2
. (4)

Substituting Eqs.(4) into Eq. (3), the distance measure is rewritten as:

D2 = d2 +(a2 +b2)sin2 θ

2
. (5)
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Eq.(5) indicates that shape-dependent distance D2 is a combination of the translational distance d and the
rotation angle θ but weighted by the shape parameter a2 +b2.

The shape-dependent distance D2 can be further decomposed into two components in the U1 and V1
directions by separating D2 into D2

u and D2
v such that

D2 = D2
u +D2

v , (6)

where

D2
u =

1
S

∫∫
S

∆u2 dS, D2
v =

1
S

∫∫
S

∆v2 dS. (7)

Following a procedure similar to that from (1) to (5), we obtain ([4]):

D2
u = d2

u +(b2 cos2 θ

2
+a2 sin2 θ

2
)sin2 θ

2
,

D2
v = d2

v +(b2 sin2 θ

2
+a2 cos2 θ

2
)sin2 θ

2
.

(8)

Introducing the angle φ such that

cos2
φ =

1
a2 +b2 (b

2 cos2 θ

2
+a2 sin2 θ

2
), sin2

φ =
1

a2 +b2 (b
2 sin2 θ

2
+a2 cos2 θ

2
), (9)

Eq. (8) can be alternatively expressed as

D2
u = d2

u +(a2 +b2)cos2
φ sin2 θ

2
,

D2
v = d2

v +(a2 +b2)sin2
φ sin2 θ

2
.

(10)

3. INTERPOLATING TWO POSITIONS

It is assumed that the orientation of an object is independent of its shape so the following linear interpo-
lation without shape parameters is used:

θm(t) = tθ . (11)

First, let us consider an interpolating function f (t) for the shape-dependent distance D, i.e., we let Dm(t)=
f (t)D where f (0) = 0 and f (1) = 1. In view of (5), we have

D2
m(t) = f 2(t)(d2 +(a2 +b2)sin2 θ

2
) = d2

m(t)+(a2 +b2)sin2 tθ
2
. (12)

By equating each corresponding term, Eq.(12) leads to

dm(t) = f (t)d, sin
tθ
2

= f (t)sin
θ

2
. (13)

Thus, the interpolant and distance functions are determined as follows:

f (t) =
sin tθ

2

sin θ

2

, (14)

and

Dm(t) =
sin tθ

2

sin θ

2

D, dm(t) =
sin tθ

2

sin θ

2

d. (15)
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This means that the same interpolant (14) works for both the shape-dependent distance function Dm(t) as
well as the translational distance function dm(t).

Now turn our attention to the problem of finding the interpolating functions fu(t) and fv(t) such that

Dmu(t) = fu(t)Du, Dmv(t) = fv(t)Dv, (16)

where Du and Dv are two shape-dependent distance components in U and V directions, respectively, as given
by (8). The end conditions for the interpolation (16) are

Dmu(0) = 0, Dmv = 0; Dmu(1) = Du, Dmv(1) = Dv. (17)

A procedure, which is similar to that from (12) to (15), can be applied to interpolate two shape-dependent
distance components. And it has been shown in [4] that the following interpolating functions

fu(t) =
sin tθ

2

√
b2 cos2 tθ

2 +a2 sin2 tθ
2

sin θ

2

√
b2 cos2 θ

2 +a2 sin2 θ

2

,

fv(t) =
sin tθ

2

√
b2 sin2 tθ

2 +a2 cos2 tθ
2

sin θ

2

√
b2 sin2 θ

2 +a2 cos2 θ

2

,

(18)

work for both (16) and dm = (dmu(t),dmv(t)) where

dmu(t) = fu(t)du, dmv(t) = fv(t)dv. (19)

Fig. 3. Two positions of a planar object along with an interpolated position with respect to a fixed coordinate frame.

When a general fixed frame is used, such that U1-axis makes an angle θ1 and U2-axis makes an angle θ2
relative to its X-axis (Figure 3), then we have, for the angular interpolation:

θm(t) = (1− t)θ1 + tθ2 = θ1 + tθ12 (20)

where θ12 = θ2 −θ1. The interpolations of the translational components, dmx(t) and dmy(t), become

dmx(t) = d1x + fx(t)(d2x −d1x),

dmy(t) = d1y + fy(t)(d2y −d1y),
(21)
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where

fx(t) =
sin tθ12

2

√
e2 cos2(θ1 +

tθ12
2 )+ sin2(θ1 +

tθ12
2 )

sin θ12
2

√
e2 cos2(θ1 +

θ12
2 )+ sin2(θ1 +

θ12
2 )

,

fy(t) =
sin tθ12

2

√
e2 sin2(θ1 +

tθ12
2 )+ cos2(θ1 +

tθ12
2 )

sin θ12
2

√
e2 sin2(θ1 +

θ12
2 )+ cos2(θ1 +

θ12
2 )

.

(22)

where e = b/a ≤ 1. When e = 1, Eq.(22) reduces to

fx(t) = fy(t) =
sin tθ

2

sin θ

2

, (23)

and the path (21) becomes a straight line.
It is noted that fx(t), fy(t) in Eq.(22) satisfy the end conditions, fx(0) = fy(0) = 0 and fx(1) = fy(1) = 1,

regardless the value of θ1. For the remainder of the paper, we set θ1 = 0 so that the resulting interpolants
are independent of the choice of the fixed reference frame. Furthermore, we let

s =
sin tθ12

2

sin θ12
2

, s ∈ [0,1], (24)

to obtain the final form of the interpolants:

fx(s) = s

√√√√e2 + s2(1− e2)sin2 θ12
2

e2 +(1− e2)sin2 θ12
2

,

fy(s) = s

√√√√1− s2(1− e2)sin2 θ12
2

1− (1− e2)sin2 θ12
2

.

(25)

The above interpolants are independent of choice of the fixed coordinate frame as well as more compact and
computationally more efficient.

For the rest of the paper, Eq. (25) will be used as the standard form for two-position interpolation as well
as in recursive form when more than two positions are to be interpolated (in Bézier sense).

4. A DE CASTELJAU ALGORITHM FOR SHAPE-DEPENDENT MOTION GENERATION

In the field of Computer Aided Geometric Design (or CAGD), the de Casteljau algorithm is a classical
tool for generating points on a Bézier curve via repeated linear interpolation [17]. Given a set of Bézier
control points b0,b1, . . . ,bn, a Bézier curve can be generated recursively using the following repeated linear
interpolation:

br
i (t) = (1− t)br−1

i (t)+ tbr−1
i+1 (t), (26)

for r = 1, . . . ,n, i = 0,1, . . . ,n− r, and b0
i (t) = bi. The end of this recursion produces a point bn

0(t) on a
Bézier curve of degree n with parameter t. A Bézier curve interpolates only the two end points but not the
rest of the control points. If rational linear interpolations are used instead of linear interpolations, then the
above algorithm generates a rational Bézier curve whose shape is determined not only by the Bézier control
points but also the weight factors.
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In this paper, we seek to apply the standard form (25) for two position interpolation recursively in the
same manner as the de Casteljau algorithm to generate Bézier-like freeform motions of an object that are
shape-dependent. We incorporate the weight factors in our formulation in order to explore the effect of the
weights on the resulting motion.

Instead of presenting the de Casteljau algorithm in its most general form similar to (26), here we present
only the case when there are three control positions Pi = (dix,diy,θi) (i = 0,1,2), where d = (dix,diy) is the
position vector of the centroid of an object in its ith position and θi is the corresponding orientation of the
object. The weight factors are denoted by wi (i = 0,1,2). The shape of the object is defined by the ratio
e = b/a as stated earlier.

Let P1
0 = (d1

0x,d
1
0y,θ

1
0 ) and P1

1 = (d1
1x,d

1
1y,θ

1
1 )be the two intermediate positions after the first level of de

Casteljau algorithm. They are given by

d1
0x(s) =

w0d0x(1− f01x)+w1d1x f01x

w0(1− f01x)+w1 f01x
,

d1
0y(s) =

w0d0y(1− f01y)+w1d1y f01y

w0(1− f01y)+w1 f01y
,

θ
1
0 (s) =

w0θ0(1− s)+w1θ1s
w0(1− s)+w1s

,

(27)

and

d1
1x(s) =

w1d1x(1− f12x)+w2d2x f12x

w1(1− f12x)+w2 f12x
,

d1
1y(s) =

w1d1y(1− f12y)+w2d2y f12y

w1(1− f12y)+w2 f12y
,

θ
1
1 (s) =

w1θ1(1− s)+w2θ2s
w1(1− s)+w2s

.

(28)

At the second level, the position P2
0(s) = (d2

0x,d
2
0y,θ

2
0 ) is interpolated between P1

0(s) and P1
1(s) based on

shape-dependent interpolants f 1
01x, f 1

01y associated with the two positions:

d2
0x(s) =

w1
0xd1

0x(1− f 1
01x)+w1

1xd1
1x f 1

01x

w1
0x(1− f 1

01x)+w1
0x f 1

01x
,

d2
0y(s) =

w1
0yd1

0y(1− f 1
01y)+w1

1yd1
1y f 1

01y

w1
0y(1− f 1

01y)+w1
0y f 1

01y
,

θ
2
0 (s) =

w1
0θ 1

0 (1− s)+w1
1θ 1

1 s
w1

0(1− s)+w1
1s

,

(29)

where
w1

0x = w0(1− f01x)+w1 f01x, w1
1x = w1(1− f12x)+w2 f12x,

w1
0y = w0(1− f01y)+w1 f01y, w1

1y = w1(1− f12y)+w2 f12y,

w1
0 = w0(1− s)+w1s, w1

1 = w1(1− s)+w2s.

(30)

After the substitution of (27) and (28) into (29), and after some algebra, the object position P2
0(s) =
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(d2
0x,d

2
0y,θ

2
0 ) as the result of repeated shape-dependent interpolations is given by

d2
0x(s) =

w0d0x(1− f 1
01x)(1− f01x)+w1d1x[(1− f 1

01x) f01x + f 1
01x(1− f12x)]+w2d2x f 1

01x f12x

w0(1− f 1
01x)(1− f01x)+w1[(1− f 1

01x) f01x + f 1
01x(1− f12x)]+w2 f 1

01x f12x
,

d2
0y(s) =

w0d0y(1− f 1
01y)(1− f01y)+w1d1y[(1− f 1

01y) f01y + f 1
01y(1− f12y)]+w2d2y f 1

01y f12y

w0(1− f 1
01y)(1− f01y)+w1[(1− f 1

01y) f01y + f 1
01y(1− f12y)]+w2 f 1

01y f12y
,

θ
2
0 (s) =

w0θ0(1− s)2 +2w1θ1(1− s)s+w2θ2s2

w0(1− s)2 +2w1(1− s)s+w2s2 .

(31)

When the shape parameter e = 1, we have fx(s) = fy(s) = s from the standard form (25). Therefore, the
above repeated shape-dependent interpolations will become the linear interpolation as shown in (26).

(a) (b)

(c)

Fig. 4. Two-position interpolations with w0 = w1 = 1: (a) various values of e; (b) e = 0.1 with the shape of the object
at eleven positions; (c) e = 0.5 with the shape of the object at eleven positions.

5. EXAMPLES

Consider the first example of interpolating two positions given by:

P0 = (2,4,0◦), P1 = (20,10,−60◦). (32)
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(a) (b)

Fig. 5. Two-position interpolations with e = 0.1 but unequal weights: (a) w0 = 1,w1 = 0.25, (b) w0 = 1,w1 = 5.

(a) (b)

Fig. 6. (a) Three-position Bézier-like motions with various values of e (in blue) and quadratic Bézier curve (in red);
(b) For e = 0.1, Bézier control triangle (in red) and Bézier-like control "curved triangle” (in blue).

Four shape parameter e of the objects in the range of [0,1] are selected for comparison:

e = [0.1,0.3,0.5,0.8]. (33)

Eqs. (27) and the standard form (25) are used for interpolating the two positions.
In Figure 4(a), both weights are equal, i.e., w0 = w1 = 1, and four curves are the paths of shape-dependent

interpolating motions with various shape parameters as given by (33). Included for comparison is the straight
line (in red), which is the path of a linear interpolation d = (1− s)d1 + sd2. As the values of e decrease, the
paths of motion increasingly move away from that of the straight-line motion. Figure 4(b) and Figure 4(c)
show the object motion by displaying eleven positions for the case of e= 0.1 (in blue) and e= 0.5 (in green),
respectively. The effect of weights on the interpolating motions between two positions is shown in Figure 5.
For both shape-dependent interpolation and linear interpolation, the paths are pulled to the position with
larger weight factors.

For the second example, the starting and the final positions remain the same, so are the shape parameters
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(a) (b)

(c)

Fig. 7. Compare the effect of weights on the Bézier-like motions for e = 0.1 (in blue) and quadratic Bézier motion (in
red): (a) w0 = 1,w1 = 1,w2 = 1, (b) w0 = 1,w1 = 0.25,w2 = 1, (c) w0 = 1,w1 = 5,w2 = 1.

(33) but a middle position is added:

P0 = (2,4,0◦), P1 = (8,15,−30◦) P2 = (20,10,−60◦). (34)

In Figure 6(a), the weights are all the same, w0 =w1 =w2 = 1, and four curves are the paths of Bézier-like
motions with various shape parameters as given by (33). Included for comparison is the quadratic Bézier
curve (in red), which is the path of a quadratic Bèzier curve d(t) = (1− t)2d1 +2t(1− t)d2 + t2d3. Figure
6(b) compares Bézier control triangle (in red) and Bézier-like control "curved triangle” (in blue) for the two
resulting motions. As expected, both paths are inside their respective control "triangles”. Figure 7 compares
the effect of weights on the resulting motions. Bézier-like shape-dependent motions are shown in blue while
rational quadratic Bézier motions are shown in red. In both cases, the paths of the motion are pulled towards
the mid control position P2 when the corresponding weight w2 increases.

6. CONCLUSIONS

In this paper, we presented for the first-time the application of de Casteljau algorithm with shape-dependent
interpolants for generating shape-dependent Bézier-like motions. It has been demonstrated that the paths of
the resulting motions are made dependent on the shape parameter, they in general exhibit similar behavior as
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Bézier curves. These shape-dependent motions could have applications in computer graphics, swept volume
analysis and optimization, as well as new formulations for motion approximation problems that take into
account object shapes.
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