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ABSTRACT
This paper investigates nonlinear model-predictive control (MPC) of a suspended cable-driven parallel

robot (CDPR) focused on the applications of aerial videography and dynamic trajectory optimization. An
MPC approach is used to perform optimal trajectory generation with explicit consideration of trajectory
smoothness and position error for aerial videography. A similar MPC algorithm is used to generate payload
trajectories outside of the CDPR’s static workspace, which can be useful in applications, such as motion
simulators, to expand the available workspace. It is shown through numerical simulations that the proposed
MPC formulation is flexible in its ability to account for different constraints and cost functions.

Keywords: Cable-Driven Parallel Robots; Model-Predictive Control; Optimal Trajectory Generation.

GÉNÉRATION DE TRAJECTOIRE ET CONTRÔLE D’UN ROBOT PARALÈLLE À CÂBLES
POUR LA VIDÉOGRAPHIE AÉRIENNE ET L’OPTIMISATION DES TRAJECTOIRES

DYNAMIQUES

RÉSUMÉ
Cet article étudie la commande prédictive nonlinéaire d’un robot parallèle à câbles suspendu concentré

sur les applications de la vidéographie aérienne et de l’optimisation de trajectoires dynamiques. Une ap-
proche de commande prédictive est utilisée pour la génération d’une trajectoire optimale en tenant compte
explicitement de la régularité de la trajectoire et de l’erreur de position pour la vidéographie aérienne. Un
algorithme de commande similaire est utilisé pour générer des trajectoires en dehors de l’espace de travail
statique du robot. Il est montré par des simulations numériques que la formulation commande prédictive
proposée est flexible dans sa capacité à prendre en compte différentes contraintes et fonctions de coût.

Mots-clés : Robot Parallèle à Câbles ; Commande Prédictive ; Génération de Trajectoire Optimale.
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1. INTRODUCTION

Cable-driven parallel robots (CDPRs) are a type of robot that uses cables to provide actuation to a central
payload [1]. This design yields several advantages over traditional robots composed of rigid body elements.
First, the CDPR typically has a larger static workspace than traditional robots, which is limited primarily
by the length and strength of its cables [2, 3]. It is also possible for CDPRs to extend this workspace even
further with dynamic motion outside of its static workspace [4]. Second, by the use of lightweight cables
and a fixed motor platform, the effective payload to robot mass ratio is significantly increased [2, 3]. As a
consequence of this, CDPRs are able to generate very high velocities and accelerations due to their relatively
small inertia [5]. However, CDPRs also feature practical drawbacks. First and foremost, the cables must
be kept under tension to retain control authority [2]. As a consequence, when torques are considered as
the inputs to the CDPR system, only torques that yield positive cable tensions are feasible. Furthermore,
many CDPRs are over constrained. In the problem of optimal trajectory generation, an over constrained
system results in an infinite number of feasible trajectories to reach a desired goal. Finding the trajectory
that best optimizes a desired task can therefore be computationally difficult. A notable example of a CDPR
is the SkyCam, which is a cable-controlled camera used for aerial videography, typically during sports
games [1]. Significant research has also been done on CDPRs for use in motion simulators [4, 6–8] and
other applications, such as rehabilitation or large-scale building assembly [1].

The task of designing a control algorithm for a CDPR has traditionally been addressed through kinematics-
based (or joint-space) proportional-integral-derivative (PID) controllers [9], where inverse kinematics is
used to determine cable lengths that correspond to a desired payload pose. PID controllers are then used
on each motor to control the torques and track the cable lengths with motor encoder feedback. However,
because feedback control is applied at the motors and not directly on the payload motion, they have no
direct feedback on the payload pose. This means any errors in the inverse kinematics will remain as noise
in the system. These challenges lend themselves favorably to a nonlinear model-predictive control (MPC)
technique that operates directly in task-space and computes either cable tensions or motor torques as control
inputs. Nonlinear-MPC can handle constraints on cable tension to avoid cable slack, as well as model the
nonlinear dynamics of the CDPR without any linearization of the model [10]. Since MPC is dependent
on an accurate model, avoiding the need for linearization is significant in order to prevent modeling errors.
This is particularly important when operating far from the linearization point, such as on the boundary of
the workspace. Compared to these other techniques, nonlinear-MPC is significantly more computationally
expensive, but its versatility in application, hardware design, and implementation is significant, as demon-
strated in this paper through the applications of aerial videography and dynamic workspace optimization.

In the literature, CDPRs that utilize MPC have no metric for the smoothness of their trajectory, which is
crucial for a camera application [4, 11]. In this paper, the jerk (i.e., the time derivative of acceleration) of
the payload is modeled according to first principles and included in the cost function of the MPC algorithm.
As such, the camera smoothness can be optimized since smoothness can be interpreted as the inverse of
jerk. However, the analytical calculation of jerk is a computationally expensive process. This paper also
considers numerical approximations of jerk and simpler cost functions that do not explicitly include jerk,
which attempt to speed up the computation time. Results with these approximations are compared to the
analytical jerk calculation. To the best of the authors’ knowledge, this is the first MPC algorithm applied to
CDPRs that models the derivative of acceleration in order to optimize with respect to jerk.

CDPRs can also be applied to motion simulation outside of the static workspace by generating trajectories
that keep the payload in constant motion. Some existing literature has investigated the application of CDPRs
for trajectory generation in a dynamic workspace for periodic trajectories [4, 6–8]. In this paper, dynamic
workspace is defined as the set of all possible poses and accelerations for which all cables have positive ten-
sion, as described in [12]. In the literature, one approach is to analytically derive classes of trajectories that
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operate outside the static workspace [6, 7]. However, each of these techniques must be solved analytically
for the specific class of trajectory and does not generalize to other trajectories. A similar technique in [8]
shows that under certain conditions, the CDPR can behave equivalently to a passive linear mass-spring sys-
tem. However, this method is limited to trajectories for which these linear conditions are met. Due to these
limitations, other papers have used MPC for CDPR control [4, 11, 13]. In [11], convex sets within the CDPR
workspace are found using offline calculations, which transforms the nonlinear-MPC problem into a linear
MPC problem. However, this naturally requires offline calculations and limits the workspace of the CDPR.
Alternatively, in [13], it is shown that the dynamics of the CDPR can be modeled as a linear time-varying
system, given a desired vertical axis (z-axis) trajectory. Using this method, MPC is implemented for trajec-
tory generation using these linear time-varying dynamics. However, formulating the dynamics with respect
to a particular axis causes errors in the state estimation of that coordinate axis to be propagated through
the other axes. Further, all of the previously discussed papers implement trajectory generation for periodic
trajectories. Some literature has instead investigated point-to-point trajectory generation outside the static
workspace [14]. However, these methods cannot be used for periodic trajectory generation. Only one other
paper implemented MPC for both periodic and point-to-point trajectory generation [4]. This method uses
Chebyshev series polynomials in order to find parameters that produce a trajectory. However, the solution
trajectory using Chebyshev series polynomials is only guaranteed to satisfy the constraints at the discretiza-
tion nodes, but not necessarily at all points along the trajectory determined by the Chebyshev series. Further,
this method is limited to polynomial trajectories given by the polynomial order of the Chebyshev series.

The approach proposed in this paper uses Euler integration and nonlinear-MPC in order to generate opti-
mal trajectories with respect to a defined cost function. It is shown that by simply imposing rate constraints
on the motor torques and a goal state that is a function of time, the generated trajectory will approach a
smooth trajectory, given by a pre-defined goal trajectory. This approach has several advantages over exist-
ing literature. Euler integration guarantees that trajectories will be feasible with respect to the constraints,
including between the discretization points. The proposed approach can be used to generate both point-to-
point trajectories and periodic trajectories, with only a modified cost function and a particular goal trajectory.
Further, this approach can be used for trajectory optimization of any functional representation of a desired
trajectory, whether feasible or not. In particular, if the desired trajectory is not feasible, the algorithm will
achieve the closest optimal trajectory with respect to its design variables. To the best of the authors’ knowl-
edge, this is the first demonstration of an MPC algorithm that can be used to generate trajectories outside
the static workspace for a CDPR given any functional representation of a desired trajectory.

The novel contributions of this paper are the construction and implementation of nonlinear-MPC to a
suspended 3 degree of freedom (DoF) CDPR that is generalizable to several different tasks. It is shown
that, by simply changing the cost function and input constraints, the algorithm is tailored to two different
applications, each of which improves upon the limitations of control techniques in existing literature. In
particular, this paper implements nonlinear-MPC with consideration for the jerk derivative of motion and a
CDPR whose trajectory must extend beyond the static workspace, with applications to a CDPR-controlled
aerial camera and a CDPR-controlled motion simulator, respectively.

2. CDPR MODEL AND DYNAMICS

The CDPR model considered in this paper is a suspended 4-actuator, 3-DoF robot with a point mass
payload, as shown in Fig. 1. Hence, the CDPR is over constrained and gravity is used to keep the cables in
tension. The inputs to this system are T1,T2,T3,T4, the torques applied to each of the motors. The state matrix
z ∈ R6 is composed of the position and velocity vectors of the CDPR payload, xp ∈ R3 and ẋp ∈ R3, along
each of the coordinate axes, x1,x2,x3, and is given by z=

[
x⊤p ẋ⊤p

]⊤
=
[
xp,1 xp,2 xp,3 ẋp,1 ẋp,2 ẋp,3

]⊤.

The torques applied to each winch are also described in vector form as T =
[
T1 T2 T3 T4

]⊤.
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û1

W3 W4

û4
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Fig. 1. A schematic of the 4-actuator, 3-DoF CDPR considered in this paper.

It is assumed there is no cable slack and that the tensions in the cables are sufficiently large to ensure the
cables can be approximated as straight lines. It is also assumed that the pose of the payload is known to the
nonlinear-MPC controller, whether through estimation or forward kinematics. The dynamics of this model
are derived from Newton’s second law and are given by

T1

r
û1(xp)+

T2

r
û2(xp)+

T3

r
û3(xp)+

T4

r
û4(xp)−Fg = mẍp, (1)

where the unit vectors ûn(xp), n = 1,2,3,4, describe the direction of cables and are defined as

ûn(xp) =

Wn,x1 − xp,1
Wn,x2 − xp,2
Wn,x3 − xp,3

 1
∥Wn −xp∥

, n = 1,2,3,4, (2)

Fg =
[
0 0 mg

]⊤ is the force of gravity on the payload, Ti is the torque applied by motor i, r is the radius
of the winch of each of the motors. Further, Wi, j represents the x j coordinate position of motor winch i, and
xp, j represents the x j coordinate position of the payload. The jerk of the payload can be found by taking the
time derivative of Eq. (1). This is solved as

...xp =
d
dt

ẍp =
d
dt

(
1

mr
(T1û1(xp)+T2û2(xp)+T3û3(xp)+T4û4(xp)− rFg)

)
= Jxẋp +JT Ṫ, (3)

where Jx =
∂ ẍp
∂xp

and JT =
∂ ẍp
∂T are Jacobians whose entries are computed as ∂ ẍp,i

∂Tj
= 1

mr
(W j,i−xp,i)
∥W j−xp∥ and

∂ ẍp,i

∂xp, j
=


1

mr ∑
4
n=1

(
Tn(Wn,i−xp,i)

2

∥Wn−xp∥3 − Tn
∥Wn−xp∥

)
i = j

1
mr ∑

4
n=1

Tn(Wn,i−xp,i)(Wn, j−xp, j)

∥Wn−xp∥3 i ̸= j

. (4)

The MPC algorithm presented in Section 3 requires a discrete-time formulation of the system dynamics.
This is described by

zk+1 = f(zk,Tk) =

[
xk

p +hẋk
p

ẋk
p +h

( 1
mr

(
T k

1 û1(xk
p)+T k

2 û2(xk
p)+T k

3 û3(xk
p)+T k

4 û4(xk
p)− rFg

))] , (5)

where the superscript k denotes a variable evaluated at time step k, h is the length of the time step, and Euler
integration is used to perform the discrete-time propagation of the system dynamics in Eq. (1). Euler integra-
tion is chosen since it guarantees that trajectories will be feasible with respect to the constraints, including
between the discretization points. Although Euler integration is chosen for this implementation, other nu-
merical integration schemes can be employed, as long as they result in a discrete-time update equation of
the form zk+1 = f(zk,Tk).
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3. MODEL-PREDICTIVE CONTROL METHODOLOGY AND IMPLEMENTATION

The model derived in the previous section is used to formulate the nonlinear-MPC algorithm in this
section. The dynamic model of the CDPR is the same in both the aerial videography and the dynamic
workspace application. Since each application has different operating criteria, the cost function and the
system constraints are tailored appropriately in the following subsections.

3.1. Model-Predictive Control for Aerial Videography
The operating constraints and desired operation of an aerial videography CDPR depend on several factors.

The main goal is to have a smooth trajectory while still maintaining minimal error with respect to a goal
state. The operating parameters of the motors and other hardware must not be exceeded. The camera payload
must also avoid contact with the ground. Considering all these factors, the finite time horizon optimal MPC
algorithm for an aerial camera is formulated, given by

min
T0,...,TN−1

N−1

∑
k=0

C(zk,Tk) (6)

subject to zk+1 = f(zk,Tk) k = 0, . . . ,N −1, (7)

Ṫk+1 =
Tk+1 −Tk

h
k = 0, . . . ,N −1, (8)

0 < T k
n < T max n = 1,2,3,4, (9)

|Ṫ k
n |< Ṫ max n = 1,2,3,4, (10)

xmin
p,3 < xk

p,3 < xmax
p,3 , (11)

...xk
p = Jxẋk

p +JT Ṫk
p, (12)

|...x k
p,i|<

...x max
p ∀i ∈ 1,2,3, (13)

where Tend = Nh is the finite time horizon of the optimal control problem, N is the number of discrete time
steps in the prediction horizon, and the state is initialized with z0 matching the measured state at the time
step coinciding with the beginning of the prediction horizon. In the version of the MPC algorithm that
calculates jerk analytically, the cost function is defined as

C(zk,Tk) = α

3

∑
i=1

(xk
p,i − xgoal

p,i )2 +β

4

∑
n=1

(T k
n )

2 + γ

4

∑
n=1

(Ṫ k
n )

2 +δ

3

∑
i=1

(
...x k

p,i)
2, (14)

where xgoal
p,i is a pre-defined function that simulates the desired position of the payload with respect to some

moving object on the ground. Although the function is defined in advance for simplicity, only the current
value of this function is known to the algorithm. This simulates the camera following an object that has self-
determined motion which cannot be predicted, such as a person or an animal. The tunable parameters α ,
β , γ , and δ are chosen based on experimental observation. Intuitively, the α and δ parameters are the most
important for the application of aerial videography, since these correspond to the relative weights of the error
in position and the jerk, respectively. The β and γ variables can be set fairly small, but must be included in
the cost function in order to avoid an indefinite solution since the CDPR is over constrained. Further details
on these tuning parameters are provided in the numerical examples in Section 4. The derivative of torque
is found using a linear approximation with respect to the discrete step size, as shown in Eq. (8). The rate
limits imposed on ...xp,i are used to avoid a bang-bang trajectory or other similar trajectories with very large
instantaneous jerk values, shown in Eq. (13). The constraints imposed on Ti are either given by or can be
calculated from the parameters of particular motor hardware, and are given by Eq. (9). The constraints on
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Ṫi are necessary to ensure feasible motor inputs, given by Eq. (10). Finally, the constraint on xp,3 denotes
the maximum vertical workspace, which is necessary to avoid colliding with the ground or exceeding the
constraints of the winches, where the CDPR would no longer be suspended, and is given by Eq. (11).

Although it is desired for the MPC algorithm to generate a trajectory that is optimal with respect to jerk,
calculating the jerk analytically at each step k is computationally expensive. Therefore, this MPC algorithm
is modified in three different ways. These modifications attempt to simplify the MPC algorithm while still
approximating the desired operation of the aerial videography CDPR. The first calculates the jerk function
using a linear approximation, which is given by

...xk+1
p =

ẍk+1
p − ẍk

p

h
. (15)

Here, the jerk derivative is assumed to be a linear function of time between time steps. This approximation
uses the cost function defined by Eq. (14).

The remaining two simplified algorithms do not directly optimize over ...xp in the cost function. Each of
these has a modified cost function that is given by

C(zk,Tk) = α

3

∑
i=1

(xk
p,i − xgoal

p,i )2 +β

4

∑
n=1

(T k
n )

2 + γ

4

∑
n=1

(Ṫ k
n )

2. (16)

The first of these simplified algorithms uses the cost function given by Eq. (16), but retains the constraints
on minimum and maximum jerk in Eq. (13). The second of these algorithms instead removes all jerk
calculations and is used as a baseline comparison, including removing Eq. (13) from the MPC algorithm.

3.2. Model-Predictive Control for Trajectories That Extend Beyond the Static Workspace
Similar to the application of aerial videography, the MPC algorithm for an expanded dynamic workspace

uses a finite time horizon optimal nonlinear-MPC algorithm. Compared to the aerial videography appli-
cation, the model of the CDPR is the same but the operation criteria is very different. Unlike the aerial
videography application, the pre-selected ideal trajectory is known to the CDPR, though is not necessarily
a feasible trajectory given particular input constraints. If the goal trajectory is feasible, the trajectory of the
CDPR will closely follow this ideal trajectory, minimizing the error with respect to the value of the ideal tra-
jectory at each time step. As a consequence, this algorithm can be used to confirm feasibility of a trajectory
with respect to particular system constraints; however, an inability to find a trajectory using nonlinear-MPC
does not necessarily imply a desired trajectory is infeasible. As before, the CDPR must also not exceed the
hardware operating parameters. Considering these factors, the nonlinear-MPC algorithm used to achieve
dynamic equilibrium is given by Eqs. (6)-(11), where the cost function is described as

C(zk,Tk) = αi

3

∑
i=1

(xk
p,i − xgoal,k

p,i )2 +β

4

∑
n=1

(T k
n )

2 + γ

4

∑
n=1

(Ṫ k
n )

2 +δ j

3

∑
j=1

(ẋk
p, j)

2. (17)

Here, the dependence on ...xp has been removed from the cost function since the payload undergoes constant
motion, and therefore acceleration, in order to sustain a trajectory outside of the static workspace. Although
the bounds of xmax

p,3 in (11) are not strictly necessary for a CDPR operating in its dynamic workspace, it
is retained for this simulation since exceeding the height of the winches causes the CDPR to be prone to
cable tangle. The tunable parameters αi, β , γ , and δ j are chosen based on experimental observation. As
before, the αi parameter is the most important in order to minimize the position error with respect to the
desired trajectory. As before, β and γ , the coefficients of the torque and torque rates, must be included in the
cost function in order to avoid solutions with large control inputs. In this cost function, δ j is used to damp
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oscillations on the xp, j pose. In particular, the δ j term is useful for certain trajectories where one or several of
the desired xp, j values is not defined. If no particular xp, j value is desired, then α j is set to zero, and δ j is set
to a nonzero value in order to damp oscillations on that axis. This makes the algorithm extremely versatile
in its construction. It is noted in [6] that, in general, the frequency of oscillation of the CDPR payload is
constrained. For example, for simple harmonic motion of three-DoF CDPRs, the natural frequency of the
oscillations and the xp,3 axis is coupled according to the expression ωn =

√
g

cxp,3
, where cxp,3 is the center

of oscillation in the xp,3 axis. Rather than solving a feasible trajectory analytically, this nonlinear-MPC
algorithm can be utilized to find the optimal trajectory given the particular design parameters for any desired
trajectory function. Finally, the goal state is defined as a function of time rather than as a static point. This
is denoted in Eq. (17) by the k subscript in xgoal,k

p,i . Thus, the cost at each step k compares the position of
the payload at time k with the dynamic goal state at step k. This allows the payload to maintain a smooth
trajectory in dynamic equilibrium.

Rather than following periodic motion, the CDPR can instead be defined to follow a point-to-point trajec-
tory with points described outside the static workspace. This is achieved by the goal-state formulation

xgoal,k
p,i = x0

p,i +
D

∑
d=1

(xd
p,i − x0

p,i)e
−ε(t−T d)2

, (18)

where the index d iterates over the desired points to be approached during the trajectory, ε is a tuning
parameter to describe the time-scale of the trajectory, and T d is the time when the goal position should
occur in the trajectory. Finally, x0

p,i represents the initial position of the payload in the xi coordinate axis, and
xd

p,i represents the coordinate value of the desired point in the xi coordinate axis. This function is derived
from the Gaussian function and is analogous to a soft constraint on the desired position. The Gaussian
function is chosen since it is a simple method of defining a point-to-point trajectory using a function. This
point-to-point trajectory utilizes the same cost function as described in Eq. (17), but with δ j = 0.

4. RESULTS

The MPC algorithms proposed are validated through numerical simulations of a 4-cable, 3-DoF sus-
pended CDPR in this section. The geometry of the CDPR is defined by the model derived in Section 2.
The simulator chosen for these nonlinear optimization algorithms is CasADi [15]. The winch locations are
defined at positions W1 =

[
−0.5 −0.5 0

]⊤ m, W2 =
[
−0.5 0.5 0

]⊤ m, W3 =
[
0.5 −0.5 0

]⊤ m,

W4 =
[
0.5 0.5 0

]⊤ m. The payload is initialized to be at position x0
p =

[
0 0 −0.5

]⊤ m.
The payload is selected to be 2 kg and the winch radius on each of the motors is selected to be 0.05 m.

The constraint imposed on motor torque, denoted by T max in Eq. (9), is chosen as 10 N·m for all simulations
based on common hobby motor specifications. In Eq. (10), the value of Ṫ max was selected conservatively
to be 20 N·m/s. This value can be adjusted based on the evaluated slew rate for the particular system.
In Eq. (13) the value of ...x max

p is selected conservatively to be 20 m/s3 for all cases except where the jerk
parameter is not considered. This parameter represents hard constraints on the payload jerk, and can be
adjusted based on operating requirements. In Eq. (11), xmin

p,3 is selected to be -1 m, which denotes a workspace
constraint at -1 m in the vertical direction. This is an arbitrary selection and can be adjusted based on the
workspace constraints of the particular system. Further, xmax

p,3 is selected to be 0 m which corresponds to
the height of the winches. In the aerial videography simulation, the number of discrete points in the time
horizon is chosen to be N = 100. This can be increased to improve the accuracy of the solver at the expense
of computation time. In the dynamic workspace simulation, the number of discrete points is instead chosen
to be N = 200. In both simulations, the time horizon Tend is chosen as 1 second so that the algorithm has some
knowledge of future trajectories to inform its current input while still converging in a reasonable amount of
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Fig. 2. Trajectory generated with the MPC formulation and analytical jerk calculation in Eq. (6), where α = 1000, β

= 0.01, γ = 0.01, δ = 0.01. The plots include (a) position, (b) jerk, and (c) torque and torque derivative versus time.

time. As a consequence of Tend = Nh, the step size h is 0.01 s and 0.005 s for the aerial videography and
the dynamic workspace simulations, respectively. Setting this step size higher for the dynamic workspace
simulation resulted in system instability, caused by the loss of accuracy in the integration.

The full trajectory of each simulation is plotted over a 5 second time horizon. Since the MPC time horizon
is limited to 1 second, this means the MPC does not have full information about the future goal states or
positional states. For each iteration of MPC, the initial guess of the next trajectory is set to be the current
position for all steps k, and the initial guess of the optimal inputs is instantiated to be the optimal trajectory
found during the last iteration. The remaining step which was not computed during the previous MPC
iteration has its inputs instantiated to the last computed optimal input. At any iteration, if a solution is not
found, then the previous iteration’s solution is used for the following step until a valid solution can be found.

4.1. Model-Predictive Control for Aerial Videography Results
An example goal trajectory is defined whose output is a figure-eight. The functional representation of this

is given in discrete time as xgoal,k
p =

[
0.5cos(2(hk+ t0)) 0.5sin(2(hk+ t0))cos(2(hk+ t0)) −0.25

]⊤ m.
This simulates a camera following directly overhead with respect to a desired point on the ground. This
goal state trajectory operates on the boundary of the static workspace of the CDPR, further emphasizing the
worst-case scenario performance of the CDPR.

The results of the MPC algorithm with analytical jerk derivative calculation are shown in Fig. 2. These
results show that, while the xp,1 trajectory closely matches the desired trajectory, the xp,2 trajectory is some-
what out of phase. Yet, the torque and torque derivative values remain within the constraints, and the jerk
remains nominal. This illustrates the trade-off between smoothness and position tracking. The parameters
of each of the jerk approximation methods in Fig. 3, Fig. 4, and Fig. 5 are selected based on the values
of the full analytical jerk evaluation, shown in Fig. 2, in order to illustrate the effectiveness of each MPC
algorithm. Compared to Fig. 2, Fig. 3 has slightly more divergence of the payload positions from the desired
positions while also saturating the ...xp,2 trajectory. This illustrates the limitations of the jerk approximation
when compared to the full analytical jerk calculation. As expected, the plots which do not optimize over jerk
in Fig. 4 and Fig. 5 have better positional tracking when compared to any of the algorithms which optimize
with respect to jerk. However, this comes with particular drawbacks. In the case of Fig. 4, this means the
jerk is always at saturation of its constraint limits, while in Fig. 5 this comes at the cost of very large instan-
taneous jerk values. This indicates that the jerk bounds are indeed providing a smoother trajectory compared
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Fig. 3. Trajectory generated with the MPC cost function and linear approximation of jerk in Eq. (15), where α = 1000,
β = 0.01, γ = 0.01, δ = 0.01. The plots include (a) position, (b) jerk, and (c) torque and torque derivative versus time.
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Fig. 4. Trajectory generated with the MPC cost function in Eq. (16) and no optimization over jerk, but retaining the
jerk constraints, where α = 1000, β = 0.01, γ = 0.01. The plots include (a) position, (b) jerk, and (c) torque and torque
derivative versus time.

to the optimization without considering jerk. Based on these results, it appears that the trajectory generated
by the nonlinear-MPC algorithm using the jerk approximation is stuck in a local minimum compared to
the analytical jerk calculation. This is noted by the saturation of the ...xp,3 axis and the lack of saturation of
...xp,1 axis, which is different than the results in Fig. 2, Fig. 3, and Fig. 4. With additional tuning of the cost
function parameters, this could be adjusted, but these were chosen to match the other trials for consistency.

Since these algorithms do not have information about the future position of the goal state when deter-
mining the optimal trajectory, none of these trajectories are able to converge to zero position error. This
information was hidden in order to simulate camera tracking of a moving object, and to demonstrate the
worst-case performance of the algorithm. The position error could be further reduced by increasing the rel-
ative cost of position error, but this has a tradeoff of high jerk and torque values. Alternatively, as shown in
the following section, providing the MPC algorithm with full information of the underlying goal trajectory
would allow the position error to converge to zero.
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Fig. 5. Trajectory generated with the MPC cost function in Eq. (16) and no optimization over jerk or jerk constraints,
where α = 1000, β = 0.01, γ = 0.01. The plots include (a) position, (b) jerk, and (c) torque and torque derivative versus
time.

It should also be noted that the algorithms were not solved in real time. There are likely several reasons
for this, including the use of a relatively computationally inefficient solver (MUMPS) and coding language
(Python). The nonlinear jerk function in Eq. (3) also likely contributes to the computational complexity.

4.2. Model-Predictive Control for Trajectories That Extend Beyond the Static Workspace
Example goal trajectories are defined for the application of periodic and point-to-point motion beyond

the static workspace. The periodic trajectory is chosen to be a circle, and is described in discrete time
as xgoal,k

p =
[
2cos(10(hk+ t0)) 2sin(10(hk+ t0))

]⊤ m. As discussed in [6], since the xp,3 axis and the
natural frequency are coupled, the desired xp,3 parameter does not need to be defined. Thus, in Eq (17),
α3 is set to zero. However, the oscillations on xp,3 need to be damped, so δ3 is set to 10, and δ j = 0 for
j = 1,2. In contrast, the points along the point-to-point trajectory are given by x1

p =
[
2 0 −0.5

]⊤ m,

x2
p =

[
−2 2 −0.25

]⊤ m, x3
p =

[
0 −2 −0.5

]⊤ m, and x4
p =

[
0 0 −0.75

]⊤ m, where x1
p, x2

p, x3
p, x4

p
are desired to occur at 1 second, 2 seconds, 3 seconds, and 4 seconds, respectively. These are formulated
into a goal function according to Eq. (18) with ε = 10 based on experimental observation. Each of these
trajectories operates outside of the static workspace. Results with the proposed MPC algorithm implemented
with these goal trajectories are shown in Fig. 6 and Fig. 7.

The trajectory in Fig. 7 is tracked with only moderate position error, while the trajectory in Fig. 6 is tracked
with minimal error. Despite the high cost parameter on the position error, the torques never reach their upper
constraint bounds. Although the torque derivative is observed to saturate, this is feasible since this only
represents a transient effect. Since the torque is not operating at its bounds of operation and has feasible rate
constraints, the positional trajectory is able to effectively track the goal position. Further, since the goal state
is a function of time, the optimal trajectory is such that the position over time approaches the trajectory given
by the goal function. Thus, with this formulation of the goal state and when the torques are operating within
their bounds, the optimal solution is shown to approach the goal state and approximate a smooth trajectory.
It is noted that the dynamic workspace simulation, particularly the point-to-point trajectory simulation, is
extremely sensitive to the finite time horizon window. This is because the CDPR has to gain momentum
in order to reach desired points outside of the static workspace, which it cannot do if a point is outside its
time horizon window. Thus, the best results are achieved with a large time horizon. Similar to the aerial
videography MPC algorithm, the dynamic workspace MPC algorithm could not perform in real time, which
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Fig. 6. Trajectory generated with the dynamic workspace MPC formulation for circular periodic motion trajectory,
where α = 100, β = 0.01, γ = 0.01, δ = 10. The plots include (a) position and (b) torque and torque derivative versus
time.
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Fig. 7. Trajectory generated with the dynamic workspace MPC formulation for point-to-point goal trajectory, where α

= 100, β = 0.01, γ = 0.01, δ = 10000. The plots include (a) position and (b) torque and torque derivative versus time.

will be addressed in future work. One method to increase computation speed would be to take multiple steps
along the generated trajectory before re-optimizing. However, this can still lead to problems, as an increased
step size can lead to tracking error if the system encounters noise or disturbances.

5. CONCLUSIONS

This paper investigated two different applications of a novel nonlinear-MPC algorithm to a 4-cable 3-DoF
suspended CDPR. This paper showed that introducing a calculation of the payload jerk could effectively pro-
duce an optimally smooth trajectory. It was also shown that several jerk approximations were also able to
fundamentally capture this same trajectory. In particular, simply adding rate constraints on the torque and
position is shown to have only slightly worse performance when compared to the analytical jerk calculation.
Further work would be useful to determine whether these approximations still effectively capture the dy-
namics of the analytical jerk calculation for a variety of different configurations and trajectories. This paper
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further showed that nonlinear-MPC could effectively find a smooth trajectory outside of the static workspace
by using Euler integration and imposing rate constraints on the torque, given a goal function that depends
on time. However, this also represents a drawback since this algorithm requires the formulation of a goal
trajectory, which must be a function with respect to time. Furthermore, although a point-to-point trajectory
was generated by using soft positional constraints, there is no guarantee of the magnitude of the positional
error with respect to the desired points of the trajectory. An alternative formulation may be constructed such
that the positional error must be sufficiently small with respect to certain goal states at given time intervals,
i.e., a hard constrained point-to-point trajectory. While this nonlinear-MPC algorithm is flexible to allow
for this point-to-point trajectory to be formulated in such a way, it is unclear whether this algorithm would
still return a feasible solution for this application. Another possible extension may be to introduce a more
complex model of the CDPR, such as a non-point mass payload or a fully-constrained CDPR.
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