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ABSTRACT
A complete classification scheme of the mobility characteristics of the input link for every planar RRRP

linkage reported in this paper is obtained in a novel and efficient way. To lay the foundation of this work,
recent results are first briefly summarised. The algebraic input-output (IO) equation for any planar RRRP
linkage is obtained by simply re-collecting the coefficients in the algebraic IO equation for a general planar
4R linkage in terms of the input link angle and the output slider linear displacement. The coefficients factor
to two pairs of bilinear terms in the design parameters, the lengths of the input and coupler links and the
offset distance of the slider longitudinal centreline from the ground-fixed R-pair centre. These four bilinear
factors can be viewed as the four faces of a regular square pyramid in the three-dimensional space implied
by the three design parameter directed distances. Intersections of the pyramid with a plane represented by
any non-zero value of the offset distance produce line bound regions each containing points that represent
all possible planar RRRP linkages. The numerical values of two of the bilinear factors of the algebraic IO
equation imply a complete classification scheme for the mobility characteristics of the input links of these
planar four-bar mechanisms based on the critical input angles (if they exist) and the extreme P-pair travel.

Keywords: planar RRRP linkages; kinematic synthesis; double points of planar algebraic equations; design
parameter space; input link mobility classification.

L’ESPACE DES PARAMÈTRE DE CONCEPTION POUR LES MÉCANISMES PLANAIRES
RRRP

RÉSUMÉ
Cet article présente un système obtenu de manière novatrice et efficace permettant une classification com-

plète des caractéristiques de mobilité d’un lien d’entrée pour chaque méchanisme RRRP planaire. Pour jeter
les bases de ce travail, les résultats récents sont d’abord brièvement résumés. L’équation algébrique entrée-
sortie (IO) pour toutes méchanismes RRRP planaires est obtenue en recueillant simplement les coefficients
dans l’équation algébrique IO pour une méchanisme planaire 4R et en les exprimant en fonction de l’angle
d’entrée et du déplacement de la liaison glissière de sortie. Ces coefficients se factorisent en deux paires de
termes bilinéaires dans les paramètres de conception. Ces paramètres étant : les longueurs du lien d’entrée
et de la bielle ainsi que la distance séparant l’axe longitudinal de la liaison glissière du centre de la paire R
fixée au sol. Ces quatre facteurs bilinéaires peuvent être interprétés comme les quatre faces d’une pyramide
à base carrée dans l’espace tridimensionnel défini par les trois distances des paramètres de conception. Les
projections de la pyramide sur un plan d’une valeur positive quelconque parmi les distances de decalage
de l’axe de la liaison glissière produisent des régions liées contenant chacune les points qui représentent
toutes les méchanismes planaires RRRP possibles. Des valeurs numériques de deux des facteurs bilinéaires
de l’équation algébrique IO découlent un système de classification complet des caractéristiques de mobilité
des liens d’entrée pour ces mécanismes planaires à quatre barres défini par les angles d’entrée critiques et la
course extreme de la liaision prismatique.
Mots-clés : méchanismes RRRP planaires ; synthèse cinématique ; points doubles des equations planaires ;
espace des paramètres de conception ; classification de mobilité de la pièce d’entrée.
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1. INTRODUCTION

The planar RRRP four-bar linkage, colloquially known as the crank-slider, has been the literal workhorse
in the realm of mechanical and aerospace engineering for centuries, if not millennia [1, 2]. While the
trigonometric analytical methods to study the relationship between the motions of the input and output
links based on the distances between the R-pair centres as well as the offset and inclination angle of the
P-pair have existed for at least 150 years [1], purely algebraic methods have not. Recent work by Rotzoll
et al. [3, 4] has yielded the remarkable result that the very same algebraic input-output (IO) equation for
planar 4R linkages, an algebraic polynomial in terms of the tangent half-angle parameters of the input and
output link angles with coefficients comprised of linkage design parameters, has the IO equations for planar
four-bar linkages that contain one or two P-pairs embedded in it. That is, one need only collect the planar
4R algebraic IO equation in terms of the input and output parameters for RRRP or PRRP planar linkages.
The new insight into the structure of the IO equations yielded by this is sufficient justification to warrant
further investigation in this area.

Fig. 1. Planar 4R closed kinematic chain.

The general IO equations for the RRRP and PRRP linkages and their inversions are naturally embedded
in that of the planar 4R. The algebraic IO equation of an arbitrary planar 4R linkage illustrated in Fig. 1 is
represented as

Av2
1v2

4 +Bv2
1 +Cv2

4−8a1a3v1v4 +D = 0, (1)

where

A = (a1−a2−a3 +a4)(a1 +a2−a3 +a4) = A1A2;

B = (a1−a2 +a3 +a4)(a1 +a2 +a3 +a4) = B1B2;

C = (a1−a2 +a3−a4)(a1 +a2 +a3−a4) = C1C2;

D = (a1 +a2−a3−a4)(a1−a2−a3−a4) = D1D2;

v1 = tan
(

θ1

2

)
; v4 = tan

(
θ4

2

)
.

The joint angle parameters v1 and v4 represent the tangent half-angles of linkage input and output angles,
θ1 and θ4. The eight bilinear factors of the coefficients A, B, C, and D in Eq. (1) depend on the signed
numerical values of the four ai link lengths. In this formulation the input link parameter, a1, is always
positive but the remaining three ai directed distances are the unique eight permutations of positive and
negative signs in each factor. Hence, the eight bilinear factors represent eight distinct planes. Treating
the ai as mutually orthogonal basis directions in the hyperplane a4 = 1 the eight planes intersect in the only
uniform polyhedral compound [5], called the stellated octahedron, which has order 48 octahedral symmetry:
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a regular double tetrahedron that intersects itself in a regular octahedron [6]. The location of a point in this
space completely determines the mobility of the input and output links and hence it is termed the design
parameter space of planar 4R linkages.

The R-pair axes of a spherical 4R mechanism all intersect at the centre of the sphere, see Fig. 2b. Those of
a planar 4R mechanism are all parallel; they can be thought of as intersecting in a common point at infinity of
the projective extension of the Euclidean plane of the planar 4R. As shown in [4, 7], this means that the planar
4R mechanism is a special case of the spherical 4R. In the limit, as the radius of the sphere tends towards
infinity, the algebraic IO equations of the spherical and planar 4R mechanisms are projectively equivalent.
The work presented in [5] reveals that the design parameter space of spherical linkages comprises eight
cubic surfaces which intersect the design parameter space of planar 4R linkages in 12 real lines, the edge
lines of the stellated octahedron, see Fig. 2a. Earlier work by Gosselin and Angeles [8, 9] in the late 1980’s
examined the spaces formed by the Freudenstein parameters of the same linkages, however the symmetry
is not present in this representation as the Freudenstein parameter space. Moreover the intersection of the
design parameter spaces of planar and spherical 4R linkages is not directly observable in that work.

(a)

a1a2

a3

a1, a1
a2, a2

a3, a3

(a) Twelve lines common to the spher-
ical and planar 4R design parameter
spaces. (b) A spherical 4R mechanism.

Fig. 2. Design parameter space intersections and a planar RRRP linkage.

In this paper, attention is focused on the design parameter space of the planar RRRP mechanism since no
information on this space exists in the literature in the algebraic form of [4, 5]. The algebraic IO equation
for planar 4R linkages is collected in terms of the variable input link angle parameter, v1 = tan(θ1/2), and
the variable slider translation, a3. The result is a 4th order planar curve in v1 and a3 with algebraic properties
very different from that of the planar 4R. These properties and their implications will be discussed. The
algebraic IO equation of the RRRP linkage contains only four bilinear factors in the design constants a1,
a2, and a4. Treating these three ai as mutually orthogonal basis directions reveals the structure of the four
planes that the four bilinear factors imply. Moreover, the mobility conditions on the input joint range of
angular displacement implied by the location of a point in this space will be derived.

2. PLANAR RRRP ALGEBRAIC IO EQUATION

Consider the planar RRRP linkage illustrated in Fig. 3a. The variables are the input joint angle θ ′1 and
the slider translation distance a′3 while the design parameters are the constant link lengths a1, a2, a′4, and
the inclination angle of the P-pair, v′4 = tan(θ ′4/2). Re-collecting Eq. (1) in terms of v′1 = tan(θ ′1/2) and a′3
yields an IO equation. Without loss in generality, the general design constant slider angle θ ′4, illustrated in
Fig. 3a, can always be set to π/2 with a suitable transformation of the x′0-y′0 coordinate system, such that
the distance a′4 along the x′0-axis is transformed to the different distance a4 along the new x0-axis which is
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(a) General P-pair orientation. (b) Orthogonal P-pair orientation.

Fig. 3. Planar RRRP linkage.

orthogonal to the longitudinal axis of symmetry (the centre-line) of the slider, as illustrated in Fig. 3b. This
will change the length of a′4 to a generally different a4 and the location of point G on the P-pair longitudinal
centre-line thereby changing the zero for the slider translation a3. Regardless, any RRRP linkage can be
so represented [10, 11]. Making the substitution in the IO equation makes several terms vanish revealing a
more compact and elegant, but still completely general, RRRP algebraic IO equation:

v2
1a2

3 +Av2
1 +a2

3−4a1v1a3 +B = 0, (2)

where

A = (a1 +a2 +a4)(a1−a2 +a4) = A1A2,

B = (a1 +a2−a4)(a1−a2−a4) = B1B2,

v1 = tan
(

θ1

2

)
; v4 = tan

(
θ4

2

)
= tan

(
π/2

2

)
= 1.

3. INTERPRETING THE PLANAR RRRP ALGEBRAIC IO EQUATION

Analysing Eq. (2) using the theory of planar algebraic curves [10, 12] one can easily prove that the
general algebraic IO equation for planar RRRP linkages has the following three characteristics which are
independent of the three constant design parameter lengths a1, a2, a4, and constant angle parameter v4 [3].

1. Eq. (2) is of degree n = 4 in variables v1 and a3 and is therefore a quartic curve in the plane spanned
by v1 and a3. The shape characteristics of individual IO curves are determined by the link lengths a1,
a2, and a4.

2. The homogeneous form of this quartic curve, Eq. (3), contains two double points each located at the
intersections with the line at infinity of the v1- and a3-axes in the v1-a3 plane.

kh := v2
1a2

3 +Av2
1w2 +a2

3w2−4a1v1a3w2 +Bw4 = 0. (3)

3. The quartic IO curve can have either genus g = 1 or g = 0. Therefore, the maximum number of
assembly modes of the associated linkage becomes m = g+ 1 [13, 14], which is 2 for IO curves of
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genus 1. It will be shown that IO equations for folding RRRP mechanisms possess genus 0, while all
other non-folding planar RRRP mechanisms have quartic IO curves that are genus 1.

3.1. Transition Linkages
A folding RRRP mechanism has link lengths that allow it to fold when v1 = 0 and a3 = 0 making a1

and a2 align with a4 on the x0-axis. There are only two ways in which the values of a1, a2, a4 lead to an
IO curve with a third real finite double point and genus g = 0. Each requires that both v1 = 0 and a3 = 0
simultaneously, and that coefficient B = 0. Since there are no real values of the link lengths that lead to both
B1 = 0 and B2 = 0 simultaneously, then either a2 = a1 + a4 or a2 = a1 - a4. These are the exact conditions
required for an RRRP linkage that can fold with links a1, a2, and of course a4, all aligned on the x0-axis.
Such linkages are called transition linkages since they only have one assembly mode, but two distinct ranges
of motion. The input link is a crank, but the output link is restricted to two ranges: a3 ≥ 0 or a3 ≤ 0. In the
folded configuration a3 = 0 implying that the mechanism can transition between either range of motion.

(a) A folding RRRP crank-slider.

v1

a3

(b) IO curve of folding RRRP crank-slider.

Fig. 4. A folding RRRP transition crank with a1 = 3, a2 = 7, and a4 =−4.

The IO curve for such a transition linkage has the finite double point at the IO curve origin (v1,a3)= (0,0),
as illustrated in Fig. 4b. The double point can be approached from any branch of the IO curve and may be
exited along any one of the four paths as well, nicely illustrating the transition behaviour. For any specified
value of v1 there are two possible values for a3 and for any desired value of a3 there are two possible values
for v1 with the exception of the finite double point.

3.2. Negative Link Lengths
The link lengths in any mechanical system can be thought of as directed distances. Suppose that the line

containing link a1 is defined by a unit position vector locating the point (x,y) = (1,1). Multiplying the vector
by the scalar -1 simply rotates the vector direction by π = 180◦ making it locate the point (x,y) = (−1,−1).
Both vectors are oriented at 45◦ relative to the positive x-axis and their magnitudes are both

√
2, but they

point in opposite directions. For the linkage in Fig. 5, the orientation of a1 is defined by the angle θ1, but
link a1 points in the opposite direction if it has a negative directed length.

The sign of the coupler directed distance, a2, is of no consequence in the shape coefficients of the RRRP
algebraic IO equation. Only the coefficients A and B in Eq. (2) contain the coupler length a2. Expanding
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Fig. 5. Negative link length meaning for a1 and a4.

these two coefficients leads to

A = A1A2 = (a1 +a2 +a4)(a1−a2 +a4) = a2
1 +2a1a4−a2

2 +a2
4; (4)

B = B1B2 = (a1 +a2−a4)(a1−a2−a4) = a2
1−2a1a4−a2

2 +a2
4. (5)

The shape of the algebraic IO equation of every planar RRRP function generating mechanism contains the
term −a2

2, which is always a negative number regardless of the sign of the numerical value of a2. However,
the complete mobility classification of the input link requires both positive and negative values of the coupler
directed length ±a2. Since the coupler correlates the rotation of the input link to the translation (linear, or
curvilinear) of the slider then directed distance +a2 points from the distal R-pair centre of the input link
to the R-pair connecting the coupler to the slider. The directed distance −a2 simply points in the opposite
direction: from the R-pair centre connecting the coupler to the slider to the distal R-pair centre of the input
link. Therefore, relative to the non-moving coordinate system x0-y0, the direction of the length a2 has no
effect on the generated function, but it’s sign affects the input link mobility classification.

Whereas, the factors A and B both contain the term 2a1a4, so the signs of the numerical values of the
parameters a1 and a4 must be considered. Since a4 always points along the x0-axis, a negative value for this
distance simply places the slider centre line along the negative x0-axis.

3.3. Assembly Modes and Working Modes
The algebraic IO curve is of degree four and can have multiple closed branches and self-intersects. If the

IO curve has two distinct branches, then in order for the linkage to cover points in both branches it must
be taken apart and reassembled in a different way. These two distinct linkage configurations, one for each
branch of the curve, are called assembly modes.

Working modes are subtly different. When the input angle reaches minimum or maximum values the
mechanism instantaneously stops moving as the coupler becomes horizontal. In these configurations the
mechanism is said to be locked because the coupler force line of action is perpendicular to the slider travel
direction. A torsional spring in the R-pair connecting the coupler to the slider, or some other form of force
capacitance, must be designed into the joint to make the slider move again, thereby breaking the lock. In
Fig. 6a the two assembly modes each have two working modes. The two working modes in each assembly
mode are separated by the minimum and maximum input angle parameters which occur at the two vertical
tangent points on each IO curve branch and represent v1min and v1max in the v1-a3 plane. At all other points
on the IO curve a vertical line intersects it in an upper value for a3 and a lower value.
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v1

a3

v1min v1max

a3max

a3min

Lower assembly
mode

Upper working mode

Lower  working  mode

(a) Rocker: a1 = 6, a2 = 1, a4 = 2. (b) The two assembly and working modes.

Fig. 6. Assembly and working modes for an RRRP.

Assembly modes correspond to distinct branches of the IO curve in the v1-a3 plane. Working modes are
similarly easily identified: if a vertical line parallel to the a3-axis intersects a distinct branch of the IO curve
in two points then there are two working modes in that assembly mode.

Input link Assembly modes Working modes

Crank 2 1 in each assembly mode
Rocker 2 2 in each assembly mode

π-rocker 1 2
0-rocker 1 2

Table 1. Assembly and working modes.

4. COMPUTING EXTREMA USING DIFFERENTIAL CALCULUS: SINGULARITY ANALYSIS

4.1. Computing v1crit to Determine a3min/max: Input Singularity
To determine a3min/max we must first determine the critical values of v1 which will be labelled as v1crit ,

which also determine input singularities [15]. Solving the RRRP algebraic IO equation for a3 yields two
solutions, which are the two working modes within each assembly mode:

a3 =
(2a1v1)±

√
−
(
(a1−a2 +a4)v2

1−a1−a2 +a4
)(

(a1 +a2 +a4)v2
1−a1 +a2 +a4

)
v2

1 +1
. (6)

Now our algebraic IO equation is expressed as a3 = f (v1). The minimum and maximum values for a3 are
obtained by computing the critical values v1crit of Equation (6). These critical values, if they exist, cause the
derivative of a3 with respect to v1 to vanish.

∂a3

∂v1
= 0. (7)
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a3max

a3min

a3

v1

-a3max

-a3min

Upper assembly mode

Lower assembly mode

(a) Crank: a1 = 1, a2 = 4, a4 = 2.

v1

a3

Upper working mode

Lower working mode

v1min

a3min

a3max

Upper working mode

Lower working mode

-v1min

(b) π-rocker: a1 = 3, a2 = 2, a4 =−4.

v1

a3

a3max

a3min

v1max

-v1max Upp
er 

work
ing

 m
od

e

Low
er 

work
ing
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od

e

(c) 0-rocker: a1 = 3, a2 = 2, a4 = 4.

v1

a3

v1min v1max

a3max

a3min

Lower assembly
mode

Upper working mode

Lower  working  mode

(d) Rocker: a1 = 6, a2 = 1, a4 = 2.

Fig. 7. IO curves in the v1-a3 coordinate plane.

v1crit1
= ±

√
(a1 +a2 +a4)(a1 +a2−a4)

a1 +a2 +a4
= ±

√
A1B1

A1
; (8)

v1crit2
= ±

√
(a1−a2 +a4)(a1−a2−a4)

a1−a2 +a4
= ±

√
A2B2

A2
. (9)

Because the double point at infinity on the a3-axis in the v1-a3 plane is isolated (an acnode) then at least
one of the critical values of v1 from Eq. (8) or Eq. (9) must always exist. In other words, v1crit1

and v1crit2
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Input Angle
link v1crit1

=±
√

A1B1
A1

v1crit2
=±

√
A2B2
A2

a3crit1
=±
√

A1B2 a3crit2
=±
√

A2B1 limit

1. Crank R R C C None

2. NA C R C C NA

3. NA R C C C NA

4. NA C C C C NA

5. Rocker R R R R ±θ1min/max

6. NA C R R R NA

7. NA R C R R NA

8. NA C C R R NA

9. NA R C R R NA

10. NA R C C C NA

11. NA C R R R NA

12. NA C R C C NA

13. π-rocker R C R C ±θ1min

14. 0-rocker R C C R ±θ1max

15. 0-rocker C R R C ±θ1max

16. π-rocker C R C R ±θ1min

Table 2. Complete input link mobility classification: R = real number; C = complex number; NA = not assemblable.

cannot simultaneously be complex. Depending on the signed link lengths ±a1, ±a2, and ±a4, it can be
shown that the radicands of

√
A1B1 and

√
A2B2 cannot simultaneously be complex.

4.2. Computing a3crit to Determine v1min/max: Output Singularity
The classification scheme for the angular displacement limits of the input link a1 depends on the critical

values of a3, abstractly labelled as a3crit , which also determine output singularities [15]. If the algebraic IO
curve possesses no vertical tangents then input link joint angle limits do not exist. To identify the critical
values of a3 we must first solve the RRRP algebraic IO equation for v1, rearranging the algebraic IO equation
as the function v1 = f (a3). There are two solutions, which represent the two possible assembly modes of
the mechanism:

v1 =
(2a1a3)±

√
−(a2

1 +a2
2−a2

3−a2
4 +2a1a2)(a2

1 +a2
2−a2

3−a2
4−2a1a2)

a2
1 +2a1a4−a2

2 +a2
3 +a2

4
. (10)

We now equate the partial derivative of v1 with respect to a3 to zero. If the critical values of a3 exist then
the angular displacement limits of the input link are computed as v1min/max = f (a3crit). It is to be seen that the
existence of a3crit requires either, or both, of Eqs. (12) and (13) to be real valued.

∂v1

∂a3
= 0. (11)
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a3crit1
= ±

√
(a1 +a2 +a4)(a1−a2−a4) = ±

√
A1B2; (12)

a3crit2
= ±

√
(a1−a2 +a4)(a1 +a2−a4) = ±

√
A2B1. (13)

The observations based on the results of numerous examples are listed in Tab. 2. Negative values for directed
link lengths a1 and a4 have been considered.

5. PLANAR RRRP DESIGN PARAMETER SPACE

In the context of the parametrisation used to obtain Eq. (2) the four bilinear coefficient factors A1, A2,
B1, and B2 each contain one of the four possible permutations of addition to, and subtraction from, a1 of
the remaining link lengths a2 and a4. These bilinear factors can be thought of as four distinct planes in a
space spanned by three mutually orthogonal basis direction vectors for each one of the link lengths a1, a2,
and a4, which we call the design parameter space. Each distinct point in the space represents the three
directed link lengths of a distinct planar RRRP linkage. These four planes each contain a triangular face of
a regular square pyramid whose axis is perpendicular to the plane a4 = 0, illustrated in Fig. 8c. The four
planes bound four distinct regions in planes parallel to a4 = 0, where each bounded region contains points
representing linkages with different input link mobility characteristics. We will consider intersections of
a1 and a2 with planes where a4 is greater than, less than, and identically equal to zero. Different non-
zero values for a4 simply scale the amplitude of a desired slider position as a function of the input angle
parameter: a3 = a4 f (v1). Fig. 8c shows intersections of the design parameter pyramid with the three planes
a4 =±1 and a4 = 3, illustrating the scaling effect for different values of a4. Fig. 8a illustrates the intersection
of the regular square pyramid with the plane a4 = 1 while Fig. 8b illustrates the intersection of the regular
square pyramid with the plane a4 =−1.

In each intersection of a1 and a2 with planes where a4 > 0 the four parameter planes of the algebraic
IO equation, Eq. (2) intersect each plane a4 < 0 in the four plane traces illustrated in Fig. 8a. These traces
have the equations A1 = 0, A2 = 0, B1 = 0, and B2 = 0. Linkages consisting of points on these plane
traces represent either folding linkages or non-movable structures. Points in the regions separated by the
plane traces represent linkages with very specific displacement capabilities, while points on the interior of
the square that has vertices (a1,a2) = (±1,0), (0,±1) represent non-assemblable linkages. We will now
determine which linkage types occupy the eight distinct trace-bound regions on the exterior of the unit
squares illustrated in Fig. 9.

a1

a2

A1= 0

A1= 0

A2= 0

A2= 0

B2= 0

B2= 0

B1= 0

B1= 0

(a) Intersection with the plane a4 = 1.

a1

a2
A1= 0

A1= 0

B1= 0

B1= 0

B2= 0

B2= 0

A2= 0

A2= 0

(b) Intersection with the plane a4 =−1.

a2
a1

a4

(c) Pyramid-plane intersections.

Fig. 8. RRRP design parameter space.
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(a) Linkage type regions in the plane a4 = 1.
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(b) Linkage type regions in the plane a4 =−1.

Fig. 9. Feasible linkage type regions within the design parameter space in the planes a4 =±1.

5.1. Design Parameter Subspaces for RRRP Linkages
The traces of the plane faces of the design parameter pyramid in the two families of planes where a4 > 0

and a4 < 0, as well as the plane a4 = 0, beg at least three questions.

Question 1. What is the significance of the points of intersection of the four plane traces, i.e. the vertices
(a1,a2) = (±1,0), (0,±1) of the square, or any location on the a1- and a2-axes?

The answer this first question is relatively straightforward. Four different pairs of plane traces intersect in
four different points on the a1- and a2-axes at the four different coordinates (±1,0) and (0,±1). Each point
requires either a1 or a2 to have zero length. The resulting linkage has no mobility because it consists of two
R-pairs having the same axis, and the third connected to the slider. Such a linkage is a rigid structure with
zero mobility, if it can be assembled at all. The same holds true for any point located on either of the a1- or
a2-axes.

Question 2. What is the significance of the location of a point within the nine distinct regions bounded by
the four traces?

To answer this question we now consider all distinct permutations of complex and real values for the
critical numbers, first discussed in Section 4 where four permutations were demonstrated. However, there
are 16 possible permutations of the four critical numbers with two potential outcomes, real or complex. The
permutations are listed in Tab. 2, which gives us the classification scheme for the existence of input angle
limits. This differential algebraic classification is completely general, free from trigonometric relations, and
accounts for all possibilities of positive and negative directed link lengths. Moreover, once the critical values
have been computed, it is remarkably straight forward to classify the mobility of the input link using the
observations described in [3, 16–18].

Consider the planes a4 > 0, one of which is illustrated in Figs. 8a and 9a. We can immediately observe
that the input link mobility is symmetric with respect to the a1-axis, indicating that the sign of the numerical
value of a2 is irrelevant for the shape coefficients of the IO equation, only its absolute value plays a role.
That is, the sign of the length of the coupler is not required to determine the algebraic IO equation. However,
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(a) Design parameter pyramid traces in a4 = 0.
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(b) Linkage type regions in the plane a4 = 0.

Fig. 10. RRRP design parameter space in the plane a4 = 0.

examining Fig. 9, the signs of a1, a2, and a4 are all required for determining mobility limits of the input link.

Question 3. What is the significance of points laying on the plane traces themselves?
In regions where the associated linkages can be assembled, they can be foldable cranks, foldable 0-rockers

or foldable π-rockers. Recall that the definition of a folding RRRP linkage is that links a1, a2, and a4 can
align along the x0-axis necessitating the a3 = 0 while simultaneously θ1 = 0, or π , in turn meaning that
the half-angle input parameter v1 = 0, or ∞. Hence, by their very definition, planar RRRP linkages whose
input links are rockers can never fold, because they are restricted to rock in the range between θ1min- θ1max

where θ1min ≥ 0 and θ1max ≤ π above the x0-axis, or below the x0-axis in the range between −θ1min ≤ 0 and
−θ1max ≥ π . Folding linkages correspond to points laying on the boundary border-lines in Figs. 9 and 10.

6. CONCLUSIONS

In this paper we have investigated the design parameter space for planar RRRP mechanisms. Using the
general RRRP algebraic IO equation, factors of link lengths are identified that define a regular square pyra-
mid in the parameter space of the three directed link lengths a1, a2, and a4, with a3 being the P-pair excursion
parameter. Locations of unique points in that space define unique planar RRRP mechanisms with input and
output mobility limits implied by the location of the individual points. These results provide a compre-
hensive numerical classification scheme based on algebraic parameters, but it also provides an elegant and
straight forward graphical method to design planar RRRP linkages with desired mobility characteristics.

Planar RRRP function generating linkages with positive slider offset distances, a4 > 0, zero offset, a4 = 0,
and negative offset distances, a4 < 0 are all conveniently represented in three plane intersections a4 = 1,
a4 = 0, and a4 = −1. Since these function generators are all conveniently scaled by non-zero values for
the offset, without loss in generality, all planar RRRP function generators with desired input link motion
characteristics can be both synthesised and analysed using Figs. 9 and 10. Note that these results free the
planar RRRP synthesis and analysis tasks from the representational complications imposed by trigonometry
and the ultimately non-linear Freudenstein design parameters.
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