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ABSTRACT
The authors propose a model of the elastodynamics of the Peppermill Carrier (PMC), a parallel isostatic

Schönflies-motion generator designed for pick-and-place operations. The Cartesian spring and the finite
element method are used to build the elastodynamics model of the robot. The stiffness and mass matrices
are obtained, as well as the natural frequencies of the robot along a test trajectory—the Adept test cycle—
that serves to evaluate the performance of the robot with respect to the operation frequency.

Keywords: Elastostatics; elastodynamics; Schönflies-motion generator.

ÉLASTODYNAMIQUE D’UN GÉNÉRATEUR PARALLÈLE DE MOUVEMENT DE
SCHÖNFLIES

RÉSUMÉ
Les auteurs proposent un modèle élastodynamique du Peppermill Carrier, un générateur isostatique pa-

rallèle de mouvement de Schönflies conçu pour les opérations de transfert. La méthode du ressort cartésien
et les éléments finis sont utilisés pour obtenir le modèle élastodynamique du robot. Les matrices de raideur
et de masse sont obtenues, ainsi que les fréquences naturelles du robot le long d’une trajectoire test—Adept

test cycle—ce qui permet d’évaluer la performance du robot en fonction de la fréquence d’opération.

Mots-clés : Élastostatique ; élastodynamique ; générateur de mouvement de Schönflies.
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1. INTRODUCTION

Pick-and-place operations (PPOs) encompass many different tasks that involve the moving of an object
from one location to another. To produce these operations, serial and parallel robots are commonly used.
While the former are known to have large workspaces with respect to their footprint, dexterous capabilities
and ease of control, the latter offer many advantages in terms of speed, accuracy, dynamic response, load-
carrying capacity, and stiffness. The Selective Compliance Assembly Robot Arm (SCARA) is one of the
best-known examples of a serial pick-and-place robot [1]. The set of motions produced by pick-and-place
robots is known to form a subgroup, the Schönflies subgroup, of the Lie group of rigid-body motions [2].
These systems are designed with four degrees of freedom (dof), namely three independent translations and
one rotation about one axis of fixed orientation.

The H4 robot [3], a parallel Schönflies motion generator (SMG), first proposed by a French-Japanese
team, was patented in 2001 [4]. It consists of one moving platform, one base platform and four identical
limbs. A detailed review on the structural synthesis of SMG was published by Gogu [5], who claimed that
there are totally three kinds of methods used for the structural synthesis of SMG, based on: displacement
group theory [6–8]; screw algebra [9–11]; and the theory of linear transformations [12, 13].

Commonly used, four-limb SMG architectures are plagued with limb interference, which results in insuf-
ficient rotation ability, limited to an angle smaller than 180◦ without the use of complex mechanisms inside
the moving platform (MP). In the last two decades, many attractive four-limb parallel architectures were
proposed, such as H4 [3], I4L [14], I4R [15], Heli4 [16] and PAR4 [17]. An improved version of PAR4
became the Adept Quattro robot [18], which is the fastest parallel robot nowadays.

Compared with four-limb SMGs, two-limb SMGs have smaller footprint and virtually unlimited rota-
tional displacement of the MP, but their stiffness is reduced [19]. Harada and Angeles studied an isocon-
strained two-limb SMG, dubbed the Peppermill Carrier (PMC) [20], featuring an architecture proposed by
the Lees [21, 22]. The PMC is driven by two identical cylindrical drives (C-drives) [23]. The C-drive design
is based on a differential mechanism of the cylindrical subgroup; it produces rotational motion and indepen-
dent translational motion in the direction of the axis of rotation. A translating Π-joint with a strain-wave-gear
(SWG) drive was proposed to enhance the load-carrying capacity of the C-drive [24]. While the objective
is to build a manipulator as stiff as possible, deformations are unavoidable due to inertia forces brought
about by high-speed/high-acceleration operations. Therefore, manipulators must be considered flexible un-
der these circumstances. However, flexible components of a parallel manipulator will bring about vibration
when fast PPOs are conducted. Therefore, the residual vibration after the motion stops will make the settling
time longer and positioning accuracy lower. Moreover, vibration will impact on system stability [25].

In this paper, the elastostatics of the PMC is first studied. Then, the trajectory used to obtain numerical
data, the Adept test cycle, is briefly detailed. Finally, the elastodynamics, including a Fourier analysis, is
conducted, the ensuing results then being discussed to assess the stiffness of the PMC.

2. ELASTOSTATICS

2.1. Model
The hypothesis underlying the elastodynamics model of the PMC is summarized as: all links are modelled

as rigid bodies, except for the arms and forearms, as illustrated in Fig. 1. The reason for this hypothesis lies
in that the latter are significantly more flexible than the other links. Notice that the screws of the C-drives
and those of the Peppermill cannot be assumed flexible, because a screw joint, just like a prismatic joint, will
jam if the joint deforms. Moreover, the flexibility of the strain-wave-gear drive is taken into consideration.
While it is not required, the arms and forearms of the PMC have the same lenght. The limbs of the PMC and
the SWG-enhanced C-drive are depicted in Fig. 2. The kinematic chain of the PMC is shown in Fig. 1(a).
The robot is modelled as an elastostatic system, like the one illustrated in Fig. 1(b). Each of the four springs
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Fig. 1. The models of the PMC: (a) kinematics chain (b) elastostatic model

of the figure is, in fact, a Cartesian spring, as defined by Lončarić [26], i.e., a lump of massless, linearly
elastic material mounted on a rigid plate and supporting a rigid body on top, illustrated in Fig. 3.
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Fig. 2. (a) Side view of limb J, (b) SWG-driven C-drive

The two arms and the two forearms are thus modelled as Cartesian springs. As the rigid body on top of
the Cartesian spring is acted upon by an external wrench, the body undergoes a small-amplitude displace-

ment, the Cartesian spring then responding with a balancing wrench, identical to the applied wrench, but of
opposite sign. Let qJ1 be the small-amplitude-displacement (SAD) screw defined at point PJ1, where J is
the limb label, for J = 1,2, as depicted in Fig. 1(b). Furthermore, let qJ2 be the SAD screw defined at point
PJ2. By virtue of the presence of the RJ1 joint, the SAD screw, defined at point P′

J1, becomes

q′
J1 = qJ1 +δβJsJ, sJ =

[

eT
J 0T

]T
(1)

where eJ is the unit vector parallel to the axis of the RJ1 joint and δβJ the small-amplitude relative rotation
about the same axis. The forearms are connected to the nuts via R (revolute) joints of horizontal axes. The
SAD screws defined at the centre of mass (COM) of the nuts (PJ2) and the COM of the Peppermill (C) are
represented by qnJ and qm, respectively. According to the rigidity assumption and the presence of the R
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Fig. 3. The concept of Cartesian spring: (a) two rigid plates coupled by a Cartesian spring; (b) the coupling of two
Cartesian springs via a R joint

joint, the relationship between qJ2 and qnJ is

qJ2 = qnJ +δγJsJ (2)

where δγJ is the “small” angle of rotation of the RJ2 joint, and sJ is defined in eq. (1). The nuts are connected
to the Peppermill via H joints of nominally vertical axes. The relationship between qnJ and qm is

qnJ = GJqm +δαJsHJ, sHJ =
[

eT
HJ pJeT

HJ

]T
(3)

where δαJ s the “small” angle of rotation of the HJ joint with respect to the direction of its axis, eHJ the unit
vector of its axis and pJ the pitch of the HJ joint. Moreover, GJ is the SAD screw transfer matrix [27] that
takes the SAD screw of one given rigid body from one point to another point of the same body. In the case
at hand, from point C to point PJ2 of the Peppermill, GJ being given by

GJ =

[

1 0
−AJ 1

]

(4)

where AJ = CPM (aJ), is the cross-product matrix of vector2 aJ , stemming from C and ending at PJ2.

2.2. The Cartesian Stiffness Matrix
The objective of elastostatic analysis is to obtain the Cartesian stiffness matrix Ke needed to conduct the

modal analysis of the PMC. Matrix Ke ∈ IR6×6 maps the SAD screw of the Peppermill into the external
wrench applied onto it, which is given by

wext = Keq (5)

where wext is the external wrench and q the SAD screw of the Peppermill. If we apply a unit external
wrench on six different directions separately, the corresponding SAD screws are nothing but the columns of
the inverse matrix of the Cartesian stiffness matrix.

Firstly, a unit external force in the x-direction, w f x, is applied at the center of mass C of the Peppermill.
From the mechanical structure of the PMC, we can find that w f x will bring about a deformation of the arm
and the forearm of limbs 1 and 2. Through the force analysis of the Peppermill, balancing forces f f 1p and
f f 2p are added on the Peppermill at points P12 and P22, respectively. Since the effects of force are mutual,
reactive forces fp f 1 =−f f 1p and fp f 2 =−f f 2p are applied on the forearm of each of limbs 1 and 2, henceforth
termed forearm 1 and forearm 2. Therefore, we can obtain the SAD screws of the two forearms in the forms

q f 1 =
(

KF1)−1
wp f 1, q f 2 =

(

KF2)−1
wp f 2 (6)

2The CPM of AAAJ is defined as the partial derivative of AAAJ ×y with respect to y, ∀y ∈ IR3.
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where KF1 and KF2 denote the Cartesian stiffness matrices of forearm 1 and forearm 2, respectively, while

wp f 1 =
[

mT
p f 1 fT

p f 1

]T
and wp f 2 =

[

mT
p f 2 fT

p f 2

]T
. On the other hand, the forces acting on forearm 1 and

forearm 2 will be transferred to arm 1 and arm 2 via corresponding passive revolute joints. The SAD screws
of arm 1 and arm 2 are given by

qa1 =
(

KA1)−1
w f 1a1, qa2 =

(

KA2)−1
w f 2a2 (7)

where KAJ denotes the Cartesian stiffness matrix of arm J, while w f 1a1 = wp f 1 and w f 2a2 = wp f 2. The
concept of SAD-screw transfer matrix is now recalled. Let GJc be given by

GJc =

[

1 0
−AJc 1

]

(8)

where AJc = CPM (aJc), vector aJc stemming from PJ2 and ending at C. GJc transfers the SAD screw of
point PJ2 to point C, the COM of the Peppermill. Therefore, the total deformation caused by the external
wrench w f x is

qw f x = G1c(qa1 +q f 1)+G2c(qa2 +q f 2) (9)

The SAD screws qw f y, qwmx, qwmy and qwmz, produced by the unit external wrenches w f y, wmx, wmy and wmz

can be obtained likewise. The deformation qw f z, caused by the unit external force in the z-direction, will be
analyzed separately because it is related to the flexibility of the strain-wave-gear drive.

A unit external force w f z is applied at the center of mass C of the Peppermill in the z-direction. Because
of the symmetric mechanical structure, each of the wrenches acting on the Peppermill by forearm 1, w f 1p,
and forearm 2, w f 2p, equals half of w f z. Therefore, the deformation of forearm J is given by

q f J =
(

KFJ
)−1

wp f J, J = 1,2 (10)

where wp f J =−w f Jp. On the other hand, the deformation of arm J is given by

qaJ =
(

KAJ
)−1

w f JaJ, J = 1,2 (11)

where w f JaJ = wp f J . As for the angular displacements of the strain-wave-gear drives, which are given by

αJ = f f JaJcos(θJ)r/kharm, J = 1,2 (12)

where f f 1a1 and f f 2a2 are the force components of w f 1a1 and w f 2a2 in the z-direction, θ1 and θ2 defined in
Fig. 1(a), kharm the torsional stiffness of the strain-wave-gear drive. Therefore, the deformation caused by
the strain-wave-gear drives at points P11 and P21 is

qhJ =
[

0T dT
hJ

]T
, dhJ =

[

(J−1)α2r sin(θ2) (J−2)αJr sin(θJ) αJ cos(θJ)
]T

, J = 1,2 (13)

where 0 is the three-dimensional zero vector. The deformation caused by the unit external wrench w f z is

qw f z = G1c(qa1 +q f 1 +qh1)+G2c(qa2 +q f 2 +qh2) (14)

Since the unit external forces and moments are applied at the COM of the Peppermill, the SAD screws are
nothing but the columns of the inverse matrix of the Cartesian stiffness matrix of the PMC. Therefore, matrix
Ke is given by

Ke =
[

qwmx qwmy qwmz qw f x qw f y qw f z

]−1
(15)

2019 CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium 5



In the above analysis, KAJ and KFJ are defined in the base frame and K̄AJ and K̄FJ denote the stiffness
matrices of arms and forearms defined in the body-fixed frame. K̄AJ and K̄FJ are posture-independent,
obtained by FEA. KAJ and KFJ are posture-dependent, derived from K̄AJ , K̄FJ by means of similarity
transformations in terms of 6×6 rotation matrices, as described below. The coordinate frames of the arms
and the forearms are shown in Fig. 4. F0 represents the fixed frame. QJ10 is the rotation matrix that carries
FJ1 into F0. Similarity, QJ21 and QJ20 are the rotation matrices that carry FJ2 into FJ1 and FJ2 into F0,
respectively. A 6× 6 rotation matrix RJ10 is now introduced to transfer six-dimensional SAD screws from
FJ1 into F0:

RJ10 =

[

QJ10 O
O QJ10

]

(16)

Similarity, the 6×6 rotation matrices RJ21 and RJ20 are further introduced:

RJ21 =

[

QJ21 O
O QJ21

]

, RJ20 =

[

QJ20 O
O QJ20

]

(17)

where RJ21 and RJ20 carry FJ2 into FJ1 and FJ2 into F0, respectively. Therefore, the relationships between
KAJ (KFJ) and its “overlined” counterpart K̄AJ (K̄FJ) are readily derived:

KAJ = RT
J10K̄AJRJ10, KFJ = RT

J20K̄FJRJ20 (18)
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Fig. 4. Cartesian coordinates and body-fixed coordinates

3. ELASTODYNAMICS

To formulate the kinetic energy generated by the flexible-component motion, the generalized coordinates
and the generalized velocities are defined below. The independent generalized-coordinate array is defined
as

q =
[

qT
m qT

11 qT
21 δγ1 δγ2 δβ1 δβ2 δα1 δα2

]T
(19)
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with the corresponding generalized velocity array q̇ following suit:

q̇ =
[

q̇T
m q̇T

11 q̇T
21 δ γ̇1 δ γ̇2 δ β̇1 δ β̇2 δ α̇1 δ α̇2

]T
(20)

As defined in Subsection 2.1, the components of q are, respectively, the SAD screws defined at C, P11, P21,
and the small-amplitude angle of rotation of the R12, R22, R11, R21, H1, H2 joints, Since all the motors are
locked at a particular posture, the motion is generated by the deformation of the flexible components. As for
the PMC, the kinetic energy is generated by the elastic motion of the arms, the forearms, the nuts and the
Peppermill, all displayed in Fig. 1(a). Let, for J = 1,2, q̇J1, q̇′

J1, q̇J2, q̇nJ and q̇m denote the corresponding
twists, defined at the points PJ1, P′

J1, PJ2, P′
J2 and C, respectively, as shown in Fig. 1(b).

As mentioned in Subsection 2.1, a schematic side view of limb J is shown in Fig. 2(a), where the points
RcJ and LcJ are the COM of the arm and the forearm, respectively. Let q̇aJ and q̇ f J denote the twists defined
at the points RcJ and LcJ , respectively. The relationship between q̇J1 and q̇aJ is

q̇aJ = GJ1q̇J1, GJ1 =

[

1 0
−RJ 1

]

(21)

where RJ = CPM (rcJ), vector rcJ stemming from PJ1 and ending at RcJ . Similarly, the relationships among
q̇′

J1, q̇J2 and q̇′
f J are readily derived:

q̇ f J = GJ2q̇′
J1 +GJ3q̇J2, GJ2 =

[

1 0
−LJ 1

]

, GJ3 =

[

1 0
−L′

J 1

]

(22)

where LJ = CPM (lcJ), L′
J = CPM (l′cJ), vector lcJ stemming from P′

J1 and ending at LcJ , its primed coun-
terpart, l′cJ , stemming from PJ2 and ending at the same point as LcJ . The kinetic energy of arm J is

T A
J =

1
2

q̇T
aJMAJq̇aJ, MAJ =

[

IAJ O
O mAJ1

]

(23)

where MAJ , IAJ and mAJ are the von Mises inertia dyad [28], the inertia tensor and the mass of arm J,
respectively. Similarly, the kinetic energy of the forearm, the nut and the Peppermill are further introduced:

T F
J =

1
2

q̇T
f JMFJq̇ f J, T N

J =
1
2

q̇T
nJMNJq̇nJ, T P =

1
2

q̇T
mMPq̇m (24)

where MFJ , MNJ and MP are the inertia dyads of: forearm and nut of limb J, and of the Peppermill,
respectively, given by

MFJ =

[

IFJ O
O mFJ1

]

, MNJ =

[

INJ O
O mNJ1

]

, MP =

[

IP O
O mP1

]

(25)

The kinetic energy of the PMC is the sum of the kinetic energies of the forearms, the arms, the nuts and the
Peppermill:

Te =
2

∑
J=1

(

T A
J +T F

J +T N
J

)

+T P (26)

Substitution of eqs. (21–24) into eq. (26), the expression for the kinetic energy of the PMC becomes,

Te =
1
2

2

∑
J=1

[(GJ1q̇J1)
T MAJ(GJ1q̇J1)+(GJ2q̇′

J1 +GJ3q̇J2)
T MFJ(GJ2q̇′

J1 +GJ3q̇J2)

+ q̇T
nJMNJq̇nJ]+

1
2

q̇T
mMPq̇m

(27)
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Moreover, upon differentiation of the two sides of eq. (1), the relationship between q̇J1 and q̇′
J1 is obtained:

q̇′
J1 = q̇J1 +δ β̇JsJ (28)

By resorting to eqs. (2 & 3), the relationships between q̇J2 (q̇nJ) and its counterpart q̇nJ (q̇m) are readily
derived:

q̇J2 = q̇nJ +δ γ̇JsJ, q̇nJ = GJq̇m +δ α̇JsHJ (29)

Substitution of eqs. (28 & 29) into eq. (27), leads to

Te =
1
2

2

∑
J=1

[(GJ1q̇J1)
T MAJ(GJ1q̇J1)+GJ2(q̇J1 +δ β̇JsJ)

+GJ3(q̇nJ +δ γ̇JsJ))
T MFJ(GJ2(q̇J1 +δ β̇JsJ)+GJ3(q̇nJ +δ γ̇JsJ)

+(GJq̇m +δ α̇JsHJ)
T MNJ(GJq̇m +δ α̇JsHJ)]+

1
2

q̇T
mMPq̇m

(30)

The generalized mass matrix of the PMC is the Hessian matrix of Te with respect to the generalized
velocities. This matrix maps the generalized velocity array into the generalized momentum array:
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
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




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(31)

where pm, pJ , pJ1, pJ2 and pJ3 are, respectively, the six-dimensional generalized momenta defined at C,
PJ1, and the generalized angular momenta about the RJ1, RJ2 and HJ joints, O the 6× 6 zero matrix, 0 the
six-dimensional zero vector, the non-zero blocks of the mass matrix being described below:

M11 = GT
1 GT

13MF1G13G1 +GT
1 MN1G1 +GT

2 GT
23MF2G23G2 +GT

2 MN2G2 +MP

M12 = GT
1 GT

13MF1G12, M13 = GT
2 GT

23MF2G22, m14 = GT
1 GT

13MF1G13s1,

m15 = GT
2 GT

23MF2G23s2, m16 = GT
1 GT

13MF1G12s1, m17 = GT
2 GT

23MF2G22s2,

m18 = GT
1 GT

13MF1G13sH1 +GT
1 MN1sH1, m19 = GT

2 GT
23MF2G23sH2 +GT

2 MN2sH2,

M22 = GT
11MA1G11 +GT

12MF1G12, m24 = GT
12MF1G13s1,

m26 = GT
12MF1G12s1, m28 = GT

12MF1G13sH1, M33 = GT
21MA2G21 +GT

22MF2G22,

m35 = GT
22MF2G23s2, m37 = GT

22MF2G22s2, m39 = GT
22MF2G23sH2,

m44 = sT
1 GT

13MF1G13s1, m46 = sT
1 GT

13MF1G12s1, m48 = sT
H1GT

13MF1G13s1,

m55 = sT
2 GT

23MF2G23s2, m57 = sT
2 GT

23MF2G22s2, m59 = sT
H2GT

23MF2G23s2,

m66 = sT
1 GT

12MF1G12s1, m68 = sT
H1GT

13MF1G12s1, m77 = sT
2 GT

22MF2G22s2,

m79 = sT
H2GT

23MF2G22s2, m88 = sT
H1GT

13MF1G13sH1 + sT
H1MN1sH1,

m99 = sT
H2GT

23MF2G23sH2 + sT
H2MN2sH2

(32)
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RJ1, RJ2 and HJ being passive joints, the angular momentum acting on them vanishes, i.e. pi j = 0. The
Cartesian mass matrix Me ∈ IR6×6 maps the small-amplitude twist of the Peppermill into the momentum
applied onto it, namely pJ = 0. From eq. (31), the Cartesian mass matrix is obtained:

Me = M11 −Mb1M−1
b2 MT

b1 (33)

where

Mb1 =
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


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




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mT
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























T

, Mb2 =

























M22 O m24 0 m26 0 m28 0
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mT
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0T mT
35 0 m55 0 m57 0 m59

mT
26 0T m46 0 m66 0 m68 0

0T mT
37 0 m57 0 m77 0 m79
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0T mT
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























(34)

4. TRAJECTORY

In order to measure the speed of a pick-and-place robot, a standard industrial task cycle has been defined.
The original (non-smooth) cycle is known as the Adept test cycle. This trajectory involves a vertical upward
translation of 25 mm, a horizontal translation of 300 mm and a final vertical downward translation of 25
mm. The MP has to move through this trajectory back and forth with a rotation of 180◦ during the horizontal
segment. The MP is at rest at the initial and final locations, the two other locations being intermediate points.
The motion between these points takes place along a straight line. Gauthier et al. [29] proposed a smooth
blending of the non-smooth Adept curve using cubic Lamé curves and an optimum selection of the blending
points on the vertical and horizontal segments. This trajectory is the one used in this paper. For the record,
the Quattro robot is capable of three cycles per second.

5. FOURIER ANALYSIS

It is essential to obtain the frequency spectrum of a highly repetitive mechanical system because the
natural frequencies should be placed outside of it to avoid resonance. The frequency spectrum is obtained
by means of Fourier analysis. A periodic function f (t) with a fundamental frequency ω can be represented
as:

f (t) =
a0

2
+

∞

∑
i=1

ai cos(iωt)+
∞

∑
i=1

bi sin(iωt)

where

a0 =
1
T

∫ T/2

−T/2
f (t)dt, ai =

1
T

∫ T/2

−T/2
f (t)cos(iωt)dt, bi =

1
T

∫ T/2

−T/2
f (t)sin(iωt)dt

in which i and T are the harmonic index and the period of function f (t), respectively. In this case, the
periodic functions are the trajectory functions of the moving platform (MP), namely, the translations along
the x-, the y- and the z-axes along with the rotation about the z-axis.

In order to obtain the excitation frequency spectrum and find the highest operation speed whose excitation
frequency spectrum is under the first natural frequency of the PMC, the distribution of normalized param-
eters |āxn|, |āyn|, |āzn| and |āφn| with respect to the frequency f when the operation frequency is 1 and 2
cycles/s are plotted in Figs. 5 and 6, respectively.

Modal analysis calls for the stiffness and mass matrices, obtained above. The mathematical model of the
robot, at an equilibrium posture, is

Mẍ+Kẋ = 0 (35)
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Fig. 5. Amplitudes of the harmonics of the four independent motions vs. natural frequencies (for an operation fre-
quency of 1 cycle/s): (a) translation along the x-axis; (b) translation along the y-axis; (c) translation along the z-axis;
(d) rotation about the z-axis
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Fig. 6. Amplitudes of the harmonics of the four independent motions vs. natural frequencies (for an operation fre-
quency of 2 cycle/s): (a) translation along the x-axis; (b) translation along the y-axis; (c) translation along the z-axis;
(d) rotation about the z-axis
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where M and K are the Cartesian mass and stiffness matrices, x the SAD screw. To obtain the natural
frequencies of the system, the well-known dynamic-matrix can be used. One has

(λM+K)u = 0 (36)

where λ and u are, respectively, the eigenvalue and the corresponding eigenvector of the above eigenvalue
problem. Therefore, by computing the eigenvalue of M−1K, the set of values −ω2 is obtained, with the
set ω being that of natural frequencies. It should be noted, however, that the last three components of the
six-dimensional eigenvector u carry units of length, while the first three do not.

With the stiffness (Ke) and mass (Me) matrices, respectively obtained in Subsection 2.2 and Section 3, the
natural frequencies along the Adept test cycle were obtained, as displayed in Fig. 7. Only the first natural
frequency is shown, as the subsequent frequencies are well above the first, and thus not significant.
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Fig. 7. The evolution of the first natural frequency of the PMC along the test trajectory ω1 (Hz)

As per Fig. 7, the minimum value of the first natural frequency is 52.5 Hz. According to Fig. 6, the
excitation frequency spectrum for an operation frequency of 2 cycles/s, we can see that the translation along
the x- and y-axis and rotation about the z-axis are obviously on the safe side. The translation along the z-axis
has already reached the limit; hence, resonance will ensue for operation frequencies above this threshold.

6. CONCLUSIONS

The main challenge faced by pick-and-place robots is speed. High-speeds are prone to lead to resonance,
which calls for an elastodynamic analysis of the robot to verify that the harmonics of the prescribed trajectory
do not lie within the frequency spectrum of the robot structure. The industry standard Adept test cycle was
used to obtain numerical data of the frequency content of the cycle at different frequencies. The model
and analysis proposed in this paper show that operation frequencies under 3 cycles per second are not
problematic. For higher operation frequencies, the current structural design of the robot under development,
the PMC, will have to be revised.
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