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ABSTRACT
In this paper the algebraic input-output (IO) equations for planar RRRP and PRRP linkages are derived

by mapping the linkage displacement constraints into Study’s soma coordinates, and using the tangent-half
angle substitutions to transform the trigonometric into algebraic expressions. Both equations are found to
be equivalent to the one that has already been derived for RRRR linkages, giving exciting new insight into
kinematic analysis and synthesis of planar four-bar linkages. The algebraic properties of the IO curves of
the equations yield information regarding the topology of the linkage, such as the sliding position limits of
the prismatic joints and/or the angle limits of the rotational joints. Additionally, the utility of the equations
are successfully verified in two approximate synthesis examples.

Keywords: function generator; four-bar linkages; Study soma coordinates.

ÉQUATION ALGÉBRAIQUE D’ENTRÉE-SORTIE POUR DES LIAISONS PLANES RRRP ET
PRRP

RÉSUMÉ
Cet article dérive deux équations algébraique d’entrée-sortie pour des liaisons planes RRRP et PRRP en

reproduisant le mouvement de liaison dans les coordonnées soma de Study et en utilisant la substitution
de demi-angle de tangente pour transformer les expressions trigonométriques en expressions algébriques.
Les équations sont déterminées équivalentes à celle qui a déjà été dérivée pour les liaisons RRRR, ce qui
permet une utilisation plus large pour la synthèse cinématique. Les courbes des équations fournissent diffé-
rentes informations sur la topologie de la liaison, telles que la position maximale de glissement de la liaison
prismatique ou l’angle maximal de la liaison pivot qui sont discutées dans l’article. En outre, chacune des
deux équations ont été vérifiées avec succès grâce à un exemple de synthèse approximant les paramètres de
conception optimaux de la liaison.

Mots-clés : liaison mécanique ; mécanisme à quatre barres ; coordonnées soma de Study.
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1. INTRODUCTION

In 1954, F. Freudenstein developed an elegant trigonometric equation for planar four-bar linkages con-
nected by four rotational (R) joints [1]. The equation, nowadays known as the Freudenstein equation, is
widely used in function-generator analysis and synthesis theory, allowing designers to identify the link
lengths of mechanisms that optimally transform, typically in a least-squares sense, a specific input angle
into a desired output angle governed by a specified functional relation, f (ψ) = ϕ . Let d be the distance
between the centres of the R-joints connected to the relatively non-moving base; a the driver length, or input
link, which is moving with an angle ψ; b the follower length, or output link, which is moving with an angle
ϕ; and c the coupler length of a planar RRRR linkage, as shown in Fig. 1. Then the displacement of the
mechanism in terms of the link lengths a, b, c, d, the input angle ψ , and the output angle ϕ is governed by
the following input-output (IO) equation

k1 + k2 cos(ϕi)− k3 cos(ψi) = cos(ψi−ϕi). (1)

Eq. (1) is linear in the ki Freudenstein parameters, which are defined in terms of the link length ratios as:

k1 ≡
(a2 +b2 +d2− c2)

2ab
; k2 ≡

d
a

; k3 ≡
d
b
.
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Fig. 1. Planar 4R function generator.

In [2], the authors Hayes, Husty and Pfurner provided an alternative derivation of a general algebraic IO
equation for the same type of mechanism:

Au2v2 +Bu2 +Cv2−8abuv+D = 0 (2)

where

A = (a−b− c+d)(a−b+ c+d) = A1A2;

B = (a+b− c+d)(a+b+ c+d) = B1B2;

C = (a+b− c−d)(a+b+ c−d) = C1C2;

D = (a−b+ c−d)(a−b− c−d) = D1D2;

u = tan
ψ

2
;

v = tan
ϕ

2
.
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Eq. (2) was obtained by mapping the linkage constraint equations of the input and output links, i.e., circu-
lar motion for R-joints, into Study’s soma coordinates [3, 4], converting the trigonometric expressions into
algebraic ones by applying the tangent of the half-angle substitutions, or Weierstraß substitutions [5], and
finally eliminating the Study coordinates to obtain the quartic IO curve [2, 6]. The authors of the new IO
equation believe that their method used to obtain the equation can be further expanded to four-bar mech-
anisms of any topology for planar, spherical, and spatial cases. Ultimately, this would provide designers
with a versatile tool to help them synthesise an optimal mechanism generating an arbitrary function. While
others have examined the possibilities of a unified approach to four-bar mechanism synthesis, see [7] for
example, proposed methods failed to identify a single algebraic and constraint-based IO equation that is
truly generalised to four-bars containing two, one, or no prismatic (P) joints.

In this paper we will derive the algebraic IO equation for RRRP, and PRRP-linkages using the same
technique developed in [2]. The main goal is to demonstrate that the method of deriving the algebraic forms
of the IO equations using Study’s soma and elimination theory [8, 9] lead to precisely the same equation,
namely Eq. (2), with only the roles of constant and variable changing for certain design parameters. We will
then interpret some important characteristics of the resulting algebraic IO curves in the coordinate plane
of the input and output variables employing the theory of planar algebraic curves [10–15]. Finally we will
illustrate these characteristics in two function generator approximate synthesis examples using the algebraic
form of the IO equation.

2. ALGEBRAIC IO EQUATION FOR RRRP FUNCTION GENERATORS

The planar RRRP-linkage, also called a crank-slider, is a widely used mechanism found in a variety of
applications, such as crankshafts, or piston pumps [16]. The linkage transforms a rotational input motion
into a reciprocating translational output motion. A schematic of the linkage type is shown in Fig. 2. In the
first step, as in the derivation of Eq. (2), the displacement constraints of the driver and follower have to be
defined [2, 6]. For that purpose, let Σ1 be a fixed Cartesian coordinate system at the intersection of the base
and driver, E the intersection point of the driver and coupler link, and F the intersection point of the coupler
and the follower link. While point E is moving on a circle with a radius of length a around the origin O of
Σ1, F is moving on a line which intersects the baseline at point G making an angle ϕ at a distance d from

Fig. 2. Planar RRRP function generator.

the origin of Σ1. Hence, the positions of E and F can be described as points in Σ1 by the following array
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element constraint equations
XE −acosψ = 0,
YE −asinψ = 0,

(3)

XF −d−bcosϕ = 0,
YF −bsinϕ = 0.

(4)

Note that these constraint equations are identical to those formulated for the 4R linkage in [2]. This allows us
to proceed in determining the IO equation in the same manner. Let Σ2 be a moving coordinate frame whose
origin is centred at E with x-axis pointing towards F , which moves with the coupler. Then the homogeneous
transformation matrix expressed in soma coordinates (x0 : x3 : y1 : y2) between the two coordinate frames is
given by [2]

T =
1

x2
0 + x2

3

 x2
0 + x2

3 0 0
2(−x0y1 + x3y2) x2

0− x2
3 −2x0x3

−2(x0y2 + x3y1) 2x0x3 x2
0− x2

3

 . (5)

For example, a point (x,y) in Σ2 can be expressed as a point (X ,Y ) in Σ1 by 1
X
Y

= T

 1
x
y

 (6)

Now, in the coordinate frame Σ2 the two end points of the coupler E and F have coordinates (x,y) = (0,0)
and (c,0), respectively. These are transformed using Eq. (5) to their representations in Σ1, and the results
are equated to the coordinates for points E and F in Eqs. (3) and (4), which, when simplified, reveal the
following four array element position constraint equations in terms of the input and output angles ψ and ϕ

as well as the four soma coordinates:

−acosψ(x2
0 + x2

3)+2(−x0y1 + x3y2) = 0;

−asinψ(x2
0 + x2

3)−2(x0y1 + x3y2) = 0;

−(bcosϕ +d)(x2
0 + x2

3)+ c(x2
0− x2

3)+2(−x0y1 + x3y2) = 0;

−bsinϕ(x2
0 + x2

3)+2c(x0x3)−2(x0y2 + x3y1) = 0.

 (7)

The Weierstraß substitutions (tangent of the half angle substitutions)

u = tan
ψ

2
, v = tan

ϕ

2
, (8)

cosψ =
1−u2

1+u2 , sinψ =
2u

1+u2 , (9)

cosϕ =
1− v2

1+ v2 , sinϕ =
2v

1+ v2 , (10)

are used to transform the trigonometric constraint based equations in Eq. (7) to algebraic equations. After
eliminating the image space coordinates xi and yi using resultants and elimination theory, and collecting the
results for the variables u and b, the following algebraic IO equation emerges

k : = Au2b2 +Bb2 +Cu2b−8abuv+Db+Eu2 +F = 0, (11)
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where

A = v2 +1,

B = v2 +1,

C = −2 (v−1)(v+1)(a+d) ,

D = 2 (v−1)(v+1)(a−d) ,

E =
(
v2 +1

)
(a+ c+d)(a− c+d) ,

F =
(
v2 +1

)
(a+ c−d)(a− c−d) .

By rearranging Eq. (11) it can easily be shown that it is identical to Eq. (2) when the terms multiplying u
and v are collected and factored instead of u and b. The difference from a designers’ perspective is only that
the variables of the 4R linkage are the IO angle parameters u and v, while those for the RRRP linkage are
the input angle parameter u and output slider distance b.

2.1. Interpretation of the RRRP IO Equation
Analysing Eq. (11) using the theory of planar algebraic curves [12] one can see that it has the following

characteristics which are independent of the design parameter constants a, c, d, and v.

1. Eq. (11) is of degree n = 4 in variables u and b.

2. It contains two double points, DP = 2, each located at the intersections with the line at infinity of the
u- and b-axis in the u−b variable design parameter plane.

3. It has genus p = 1, hence, it is an elliptic curve and the maximum number of assembly modes of the
linkage becomes m = p+1 = 2 [6, 15].

These three characteristics are now proved to be true for all non-degenerate planar RRRP linkages. The
first item is obvious by inspection. The proof of the second item requires that Eq. (11) be homogenised. If
we use the the homogenising coordinate w we obtain

kh : = Au2b2 +Bb2w2 +Cu2bw−8avubw2 +Dbw3 +Eu2w2 +Fw4 = 0. (12)

The three partial derivatives of kh with respect to the three variable coordinates u, b, and w are

∂kh

∂u
= 2Aub2 +2Cubw−8avbw2 +2Euw2 = 0,

∂kh

∂b
= 2Au2b+2Bbw2 +Cu2w−8avuw2 +Dw3 = 0,

∂kh

∂w
= 2Bb2w+Cu2b−16avubw+3Dbw2 +2Eu2w+4Fw3 = 0.


(13)

Equations (12) and (13) have two common solutions which are independent of the link lengths a, c, and d,
as well as angle parameter v, which are embedded in the coefficients A, B, C, D, E, and F :

S1 := {u = 1,b = 0,w = 0}, S2 := {u = 0,b = 1,w = 0}. (14)

These two points, called double points, common to all algebraic IO curves for every planar RRRP four-bar
mechanism are the points on the line at infinity w = 0 of the u- and b-axes, respectively. Each of these
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double points can have real or complex tangents depending on the values of the link lengths, which in turn
determines the nature of the mobility of the linkage. Since these two points are uniquely defined relative to
the regular points on the curve, they are also known as singular points.

The discriminant of Eq. (12) evaluated at a double point reveals whether that double point has a pair of real
or complex conjugate tangents [14], yielding information about the topology of the mechanism [6, 13]. If
the tangents are complex conjugates the double point is an acnode: a hermit point that satisfies the equation
of the curve but is isolated from all other points on the curve. If this is the case then the slider travel,
represented by b, is restricted. The discriminant and the meaning of its value are [13, 14]

∆ =

(
∂ 2kh

∂u∂w

)2

− ∂ 2kh

∂u2
∂ 2kh

∂w2


> 0 ⇒ two real distinct tangents (crunode),
= 0 ⇒ two real coincident tangents (cusp),
< 0 ⇒ two complex conjugate tangents (acnode).

(15)

For the homogeneous IO equation of an RRRP linkage, Eq. (12), the discriminant of the point at infinity
(u : b : w) = (0 : 1 : 0) on the b-axis is

∆ =−4(v2 +1)2, (16)

meaning that the double point associated with the output slider is always an acnode independently of the
link lengths and orientation of the slider. It should not surprise that the ∆ of Eq. (12) is always negative,
since the slider must always have finite translation limits.

To determine whether the rotational input link is a crank or a rocker, it is sufficient to determine if the
numerical value of the coefficient E in Eq. (11) is less than zero when the coordinates in Σ1 are transformed
by the rotation about OΣ1 required to make v= 1, i.e., ϕ = π/2. Since the two factors (v2+1) and (a+c+d)
in E must always be greater than zero, it is a simple matter to show that the condition for input link a to be
a crank reduces to

a− c+d < 0. (17)

The proof for the third item comes from the definition of genus, which in this case is the difference
between the maximum number of double points for a curve of degree 4 and the actual number of double
points it possesses. The maximum number of double points, DPmax for an algebraic curve of degree n is
given by [17]

DPmax =
1
2
(n−1)(n−2).

The maximum number of double points for a curve of degree 4 is 3. We see that because the algebraic IO
curve has only 2 double points, it is deficient by 1, hence it’s genus is p = 1. Because of this, it cannot be
parameterised, and it is defined to be an elliptic curve [12]. This definition does not mean that the curve
has the form of an ellipse, rather that the curve can be expressed, with a suitable change of variables, as an
elliptic curve. In the plane, every elliptic curve with real coefficients can be put in the standard form

x2
2 = x3

1 +Ax1 +B

for some real constants A and B. We now consider some illustrative RRRP examples.

Example 1. Design parameter selection: a = 2.8; c = 1.7; d = 1; v = 1.5.
With the chosen design parameters, the input link a is a rocker because Eq. (17) is > 0 for some −π ≤

ψ ≤ π . Two different assembly modes I and II can be identified examining Fig. 3. Each assembly mode
has two locations where the mechanism is positioned at an input singular configuration where the tangents
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Fig. 3. RRRP where a = 2.8, c = 1.7, d = 1, v = 1.5.

of the IO equation are vertical, separating each assembly mode into two working modes. If the link is
assembled according to the upper right part of the curve (assembly mode I), ∆uItot and ∆bItot correspond
to the maximum swing angle and maximum sliding position, respectively. Considering each working mode
separately, ∆b11 and ∆b12 correspond to the maximum sliding position in assembly mode I. Similarly, if
the link is assembled according to the lower left part of the curve (assembly mode II), ∆uIItot and ∆bIItot

correspond to the maximum swing angle and maximum sliding position. The maximum sliding positions
for each working mode are ∆b21 and ∆b22.

Fig. 4. RRRP where a = 2.8, c = 1.7, d = 1, v = 0.

Example 2. Design parameter selection: a = 2.8; c = 1.7; d = 1; v = 0.
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Taking the same design parameters, but changing the orientation of the slider to v = 0 reveals a represen-
tation of the IO equation as shown in Fig. 4. Again, examining Eq. (17) shows that the expression is not < 0
for every −π ≤ ψ ≤ π , hence, the input link is a rocker. The linkage is once again split into two assembly
modes, I and II. Due to the chosen parametrisation according to Eq. (8) and as ψ = π is included in as-
sembly mode I, the graph contains the point at u =±∞, explaining the asymptotes of the IO equation. The
maximum swing angle as well as the maximum sliding position can be evaluated analogous to the previous
example.

Example 3. Design parameter selection: a = 2; c = 2.5; d = 1; v = 0.2.

Fig. 5. RRRP where a = 2, c = 2.5, d = 1, v = 0.2.

These design parameters yield an IO equation illustrated in Fig. 5. In contrast to the previous examples,
Eq. (17) is < 0 meaning that the input link a can fully rotate. This linkage also possesses two assembly
modes I and II, resulting in identical maximum sliding position, ∆bItot = ∆bIItot . In this example, points
where the mechanism is located at an input singular configuration do not exist. The output linkage movement
is unambiguously defined via the linkage assembly.

Example 4. A very special RRRP linkage arises when a = c and v = 0. With these conditions, the factors
of Eq. (11) simplify to

(b+d)(bu2 +2cu2 +du2 +b−2c+d) = 0. (18)

As a result, this special IO equation is decomposed into two operation modes. Moreover, two additional
double points can be observed. These double points, the bifurcation points, BP1 and BP2, are always located
at

BP1(+1,−d), BP2(−1,−d).

This IO equation has four different working modes, the input link a is able to rotate completely, and the
mechanism has the ability to fold. From Eq. (18), the global maximum is found at bmax = 2c− d and the
global minimum is the asymptote at bmax = −2c− d which leads to the following four maximum sliding
positions ∆bimax

∆b1max ,= 4a = 4c ∆b2max ,= 2c ∆b3max ,= 2c ∆b4max ,= 0. (19)

An example of the IO equation (where a = c = 1.7 and d = 1) is illustrated in Fig. 6.
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Fig. 6. RRRP where a = c = 1.7, d = 1, v = 0.

2.2. RRRP Approximate Synthesis
To show that Eq. (11) can be used to generate arbitrary functions of the form f (ψ) = b, an example

approximating the curve
b = cos(ψ) (20)

is considered. For this example, 50 sample points were evenly distributed within the interval −3≤ u≤ 3.

b

u

Fig. 7. a = 0.9426, c = 1.1587, d = 1, v = 1.5×10−5.

The Newton-Gauss algorithm was used to iteratively minimise the structural error, the error residual
found between the prescribed curve and the curve generated by the linkage [18]. The optimised function
approximation with an RRRP linkage is obtained with the identified design parameters a = 0.9426, c =
±1.1587, d = 1, and v = ±1.5×10−5. Fig.7 illustrates the structural error of the identified linkage. This
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example underscores the applicability of the general algebraic IO equation for RRRP in addition to RRRR
linkages.

3. ALGEBRAIC EQUATION FOR PRRP FUNCTION GENERATOR

As it was demonstrated that the general algebraic IO equation is useful for RRRP mechanism synthesis,
it is reasonable to expect that the equation is equally valid for PRRP mechanisms. We won’t consider
mechanisms with three P-joints since such linkages can only generate translations. The PRRP mechanism
consists of one prismatic, two rotational, and another prismatic joint. In addition to a translational output
motion b, the input motion a of the function generator is also a translation governed by a functional relation
expressed by f (a) = b. The most common configuration is the elliptical trammel whose prismatic joint
directions are perpendicular to each other, but the P-joint axes may have any non zero angle between them,
as illustrated in Fig. 8.

a

X

Y

E

F

d

G

c

b

Fig. 8. A PRRP linkage.

Since the two prismatic joints are both moving on a line, the initial constraint equations for the PRRP
can again be set up according to Eqs. (3) and Eqs. (4). Note that in this particular case, the variables of the
IO equation become a and b, while u, v, c, and d represent the design parameters. According to the same
derivation for the RRRP and the RRRR function generators, but instead treating both a and b as variables,
the IO equation of the function generator becomes

Aa2 +Bb2 +Cab+Da+Eb+F = 0, (21)

where the coefficients are factors of constants u, c, d, and v:

A =
(
v2 +1

)(
u2 +1

)
;

B =
(
v2 +1

)(
u2 +1

)
;

C = −2(uv−u+ v+1)(uv+u− v+1) ;

D = 2d
(
v2 +1

)
(u−1)(u+1) ;

E = −2d (v−1)(v+1)
(
u2 +1

)
;

F = −
(
v2 +1

)(
u2 +1

)
(c−d)(c+d) .

Again, by collecting the variables in a different way it can easily be shown that Eq. (21) is identical to
Eqs. (2) and (11).
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3.1. Interpretation of the PRRP IO Equation
Eq. (21) has the following characteristics.

1. It is of degree n = 2.

2. It is a quadratic equation in two variables, thus, the IO equation is a conic section.

3. It’s IO curve possesses genus p = 0, hence the maximum number of assembly modes of the linkage
is m = p+1 = 1 [6, 15].

From the discriminant, ∆q, of the quadratic form associated with the conic section implied by Eq. (21)

∆q =

∣∣∣∣ A C/2
C/2 B

∣∣∣∣ , (22)

we can, according to Tab. 1, determine whether the conic is an ellipse, parabola or hyperbola [19]. For

Discriminant of a non-degenerated conic Shape
∆q > 0 ellipse
∆q = 0 parabola
∆q < 0 hyperbola

Table 1. Impact of the discriminant value on the shape of function the PRRP can generate.

Eq. (21) the discriminant reduces to∣∣∣∣ (
v2 +1

)(
u2 +1

)
−(uv−u+ v+1)(uv+u− v+1)

−(uv−u+ v+1)(uv+u− v+1)
(
v2 +1

)(
u2 +1

) ∣∣∣∣ = 4(uv+1)2 (u− v)2 (23)

Since Eq. (23) is independent of link lengths then ∆q ≥ 0 for all PRRP linkages and the conic represented
by Eq. (21) can never be an hyperbola. The graph of the IO equation is always an ellipse with but one
exception: if u =−1

v or u = v, the conic becomes a special parabola, i.e., two parallel lines. A distinguished
ellipse, the circle, arises when A = B and C = 0 which are the cases for

u =±1,v = 0 u = 0,v =±1, (24)

i.e., when the axes are perpendicular to each other. These findings align with the literature [20] proving that
this type of mechanism generates an ellipse, confirming the validity of the derived PRRP IO equation.

Example 5. Design parameter selection: v = 1.7; u = 0.8; c = 2; d = 1.
Fig. (9) illustrates the maximum sliding positions atot and btot . Considering a to be the input slider, two

singular points separate the curve into two working modes. Hence, the output slider can have two different
maximum sliding positions ∆b1 and ∆b2.

3.2. PRRP Approximation Synthesis
To show that Eq. (21) can also be used to generate a general function f (a) = b, we now consider an

example where the desired function is
b = cos(a). (25)

For this example 50 sample points are selected to be evenly distributed within the interval 0≤ a≤ 2. Again,
the Newton-Gauss algorithm is used to minimise the structural error.As a result, the best approximation with
a PRRP linkage is obtained with the identified constants c = 2.0313, d = 1, u =−1.1868, and v = 0.1353,
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Fig. 9. PRRP where v = 1.7, u = 0.8, c = 2, d = 1.

or c = 2.0313, u = 1.1868 and v =−0.1353. The designer may chose between these two different assembly
modes. The structural error is illustrated in Fig. 10. The desired curve is illustrated in red, and the blue curve
represents the approximation obtained by the PRRP linkage. For this example, the approximation obtained
by the PRRP function generator is notably close to the prescribed curve. Hence, this example confirms the
applicability of Eq. (21) for approximate synthesis problems.

                           a
    

    

    

 

   

   

   

   

 

   
                                     

                                    

               b     a)

b

Fig. 10. PRRP: v = 0.1353, u =−1.1868, c = .03132, d = 1.

4. CONCLUSIONS

In this paper two algebraic IO equations for RRRP and PRRP linkages were derived. It was shown that
these equations are identical to the algebraic equation for RRRR linkages derived in [2]. We believe this
to be a remarkable result having never been reported in the vast body of archival literature collected since
antiquity! Analysing the equations revealed that the RRRP linkage can have a maximum of two assembly
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modes which can be divided into two working modes. A folding mechanism occurs if a = c and v = 0. The
PRRP linkage has only one assembly mode. It was demonstrated that its IO curve is either an ellipse or
if u = −1

v or u = v two parallel lines. Furthermore, both equations were verified by a synthesis example
that approximated the respective design parameters. Being able to expand the algebraic IO equation to two
additional linkages, RRRP and PRRP, helps designers to choose the optimal linkage with the optimal design
parameters with reduced time and effort. The generalisation of this paper is an important step towards the
main goal of synthesising the optimal linkage of planar, spherical, or spatial function generators.
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