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ABSTRACT
Research in the automation of hydraulic excavators and rockbreakers is becoming more and more promi-

nent. A model-based approach to control such machines necessitates an adequate dynamic model in order
to increase the robustness of the controller and improve its performance (e.g., reduce tracking error). Most
previous efforts in the development of dynamic models for excavators have made the assumption of planar
motion while also neglecting the dynamic effects due to the presence of hydraulically-driven prismatic actu-
ators. In this paper, the dynamic model of the mechanical subsystem of a hydraulic rockbreaker is developed
using the Euler-Lagrange formulation. The model considers the contributions of the hydraulic actuators and
does not assume planar motion. Potential simplifications to the dynamic model are then introduced with
the objective of facilitating the model’s parameterization for the purpose of developing an adaptive control
algorithm. In order to evaluate their level of accuracy, these simplified dynamic models are then evaluated
based on the required joint torques for specified trajectories. It is shown that the proposed simplifications
reduce the complexity of the dynamic model while preserving its accuracy and simplicity which is attractive
for real-time control applications.

Keywords: hydraulic rockbreaker; dynamic modeling; automation.

SIMPLIFICATION DU MODÈLE DYNAMIQUE D’UN BRISE-ROCHE HYDRAULIQUE POUR
PERMETTRE SON UTILISATION DANS UN ALGORITHME DE COMMANDE À BASE D’UN

MODÈLE DYNAMIQUE

RÉSUMÉ
Le développement d’excavatrices et de brises-roches hydrauliques automatisés a fait l’objet de plusieurs

recherches récentes. La commande de tels systèmes à partir d’algorithmes fondés sur des modèles dyna-
miques nécessite que ces modèles soient suffisamment détaillés pour assurer une performance adéquate.
Dans la plupart des travaux existants portant sur la modélisation dynamique d’excavatrices, les mouvements
de ces dernières sont limités à un plan tandis que les contributions de leurs vérins hydrauliques sur le mo-
dèle dynamique sont négligées. Dans cet article, le modèle dynamique des composants mécaniques d’un
brise-roche hydraulique est développé à partir de la formulation de Euler-Lagrange. Le modèle prend en
considération les contributions des vérins hydrauliques et permet les mouvements spatiaux. Des simplifica-
tions potentielles pouvant être apportées au modèle sont introduites avec l’objectif de faciliter la paramétri-
sation du modèle pour permettre son utilisation dans un algorithme de commande adaptatif. Pour évaluer
la performance des modèles dynamiques simplifiés, ces derniers sont évalués en fonction des couples cor-
respondants devant être fournis aux articulations rotoïdes pour des trajectoires spécifiées. Il est démontré
que les contributions des vérins hydrauliques au modèle dynamique du brise-roche sont, dans plusieurs cas,
négligeables.

Mots-clés : brises-roches hydrauliques ; modélisation dynamique ; automatisation.
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1. INTRODUCTION

A rockbreaker is a hydraulically actuated machine commonly used in the mining and construction in-
dustries to fracture large pieces of material into smaller pieces that are sifted through a metal grid known
as a grizzly. With advancements in the field of robotics, interest in the automation of such systems, along
with hydraulic excavators, has grown. In order to achieve suitable control of such devices, nonlinear con-
trol algorithms are typically designed with compensators and/or are based on the system’s behaviour during
operation as described by its dynamic model. Due to the presence of complex phenomena such as joint
friction, parametric uncertainties and the non-linearity of the hydraulic and mechanical subsystems, the
modeling and design of model-based controllers for such systems is difficult and challenging task. Parame-
ter uncertainties may lead to poor system response (e.g., higher trajectory tracking error) during the system’s
motion. However, such negative effects can be reduced through the use of a robust controller as seen in [1]
or adaptive controllers such as the ones presented in [2, 3], which utilize the system’s dynamic model in
a parameterized form to estimate the approximately known or uncertain parameters of the dynamic model.
Therein lies the importance of developing an accurate yet not overly complex dynamic model such that it
may be parameterized. There have been numerous papers describing the dynamic modeling of hydraulic
excavators in the past, notably following the Newton-Euler conventions [4–6], using Kane’s equations [7]
or using the Lagrange-Euler convention [8]. All dynamic models presented in [4–8] represent a hydraulic
excavator as a planar three-degree-of-freedom (3-DoF) manipulator (where the swing joint of the excavator
is not considered). They also neglect the dynamic effects of the hydraulic actuators on the dynamic model
. The resulting dynamic models describe the complex link dynamics of an excavator without any simplifi-
cations, with the exception of the model presented in [4], which assumes the centre of mass for each link to
be in-line with each link’s corresponding axis.

While previous works have consistently used simplified dynamic models of large hydraulic machinery,
to the authors’ knowledge none have validated such simplifications through dynamic simulations. The re-
search presented in this paper seeks to mitigate this shortcoming by developing a detailed dynamic model
of a 4-DoF rockbreaker. The scope of the work presented herein includes the rockbreaker mechanism (i.e.,
links, joints and actuators) but excludes the hydraulic system used for the actuation. The rockbreaker that
is considered is assumed to be anchored to a stationary pedestal while interactions with its environment are
not considered (the rock breaking operation is outside the scope of this research). In order to reduce the
complexity of the dynamic model and ease the implementation of an adaptive control algorithm, the neglect
of some terms within the dynamic model will be explored and the corresponding effects will be quantified.
The possibility of neglecting terms within the dynamic model is cited by [9], who states that the effects of
the Coriolis and centrifugal terms of the dynamic model of excavators are negligible due to the system’s
relatively low velocities. The goal is to identify a simplified dynamic model of a rockbreaker that represents
the actual system with sufficient accuracy while allowing for an easier parameterization to be used in an
adaptive controller, similar to the one presented in [2]. It is expected that this would lead to corresponding
reductions to the time required within a real-time control algorithm for the computation of the dynamic
model although this is not validated in this paper.

2. DESCRIPTION OF ROCKBREAKER SYSTEM

A CAD model of a rockbreaker can be seen in Fig. 1 where the swing post, the inner boom, the outer
boom and the breaker have been identified. For the purpose of modeling and analysis, these parts within
the rockbreaker may be considered as the links of a four-degree-of-freedom serial robot as represented
schematically in Fig. 2 where revolute joints connecting the links are labeled as Ri (i = 1,2,3,4). The ith

link length, defined as the distance between the axes of revolute joints Ri and Ri+1, is represented as ai (note
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Fig. 1. Typical rockbreaker with grizzly used in underground mining operations.

that reference point P′, located at the tip of the breaker, acts in lieu of the non-existent R5). Meanwhile,
the angles of the revolute joints are denoted as θi. The rockbreaker’s passive revolute joints are actuated
indirectly through a series of hydraulically-driven prismatic actuators whose lengths are represented as ρ j

( j = 0,1, ...,4). This actuation scheme allows for high torques to be efficiently produced at each revolute
joint but results in nonlinear relationships between the actuator lengths (ρ j) and the revolute joint angles
(θi). It should be noted that revolute joint R1 is controlled by two actuators (ρ0 and ρ1) connected in
parallel in order to provide it with a symmetrical torque v. angular displacement curve (see Fig. 2(a)).
The actuator lengths ρ j act as the inputs to the system (through actuation of the hydraulic valves) while the
outputs correspond to the combination of the resulting position and orientation of the end-effector. The end-
effector’s position is described as the location of a reference point P on the breaker that, as shown in Fig.
2(b), is measured from the X1Y1Z1 reference frame and is represented as p = [x,y,z]T . The end-effector’s
orientation, for its part, is represented by the angle φ measured between the X2 axis and a line joining points
P′ and P. The centres of mass of the links as well as those of each hydraulic actuator barrel and piston
assembly are labeled as Cli , Cbi and Cpi , respectively. It should be noted that, although they may appear
in-line with the prismatic actuators’ axes (defined as the lines joining nodes Ai and Bi) in Fig. 2, the centres
of mass of the actuator barrels and piston assemblies are generally offset from these axes which adds some
complexity to the dynamic model.

To generate the results presented herein, the geometric parameters and inertial properties of all the rigid
bodies seen in Fig. 2 were obtained from the CAD model of an existing commercial rockbreaker combined
with information extracted from hydraulic actuator data sheets. Tolerances in the manufacturing process,
variations in the physical properties of materials and unmodeled effects combine such that the resulting
dynamic model is expected to deviate from the actual system. While such deviations could lead to poor per-
formance of the model-based control algorithm, this may be mitigated by the use of an adaptive controller,
which would ensure parameter estimates converge toward optimal values.

3. KINEMATIC ANALYSIS

In order to develop the dynamic model of the rockbreaker, knowledge of the rigid bodies’ centre of mass
positions and velocities as well as the angular velocities of the rigid bodies are required. The system’s
kinematics are modeled using the Denavit-Hartenberg convention as described in [10] . Based on this
convention, reference frames have been defined as seen in Fig. 2 where the ith frame is attached to the
(i−1)th link with origin at Ri (with the exception of frame X5Y5Z5 which has its origin at P′). The link offset

CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium, 2017 3



ρ0

ρ1

ρ2

ρ3

ρ4

θ2
θ3

θ4

P

θ1

(a) (b)

X1

Y1

Z1

φ

X1

p
O

P ′

A0

B1

A1

B0
A2

B2

A3

B3
A4

B4

C`1

C`2 C`3

C`4

C`1

Cp4

Cb4Cp3

Cb3

Cb2

Cp2

Cb0

Cp0

Cb1 Cp1
R1

R2

R4

R3

X2

Y2
X3

Y3

X4

Y4

X5

Y5

ρj

Aj

Bj

C`i−1

Cpj

Cbj

Ri−1

Ri

Xi−1

Yi−1

Xi

Yi

ai−1

sli1

sbj

spj

Y ′j
X′j

(d)

uj

γj

(c)

X1

Y1

A0

B1

A1

B0

Cb0

Cp0

Cb1 Cp1

R1

Y ′1

X′1

Y ′0 X′0u0

sb0

sb1
sp1

sp0

u1

γ0

γ1

Fig. 2. Schematic representation of rockbreaker with parameter definitions: (a) and (c) Top view of base and swing
post, (b) and (d) side view of complete rockbreaker.

is defined as bi while the link twist is labeled as αi.The position of the (i+1)th frame relative to the ith frame
is obtained as:

[ai]i = [aicosθi,aisinθi,bi]
T (1)

where [·]i represents a vector expressed in the ith reference frame. Meanwhile, the rotation matrix which
rotates the ith frame into the (i+1)th frame is computed as:

Qi
i+1 =

cosθi −sinθi cosαi sinθi sinαi

sinθi cosθi cosαi −cosθi sinαi

0 sinαi cosαi

 (2)

The position of the centre of mass of the ith link with respect to the (i+ 1)th reference frame (which is
attached to this link) is defined by the vector sli (see Fig. 2(d)). The position of the centre of mass of the nth

link (n = 1,2,3,4) with respect to the origin of the X1Y1Z1 reference frame may thus be described as:

[c̄ln ]1 =
n

∑
i=1

[ai]1 +[sln ]1 = [a1]1 +Q1
2[a2]2 + · · ·+Q1

2Q2
3 . . .Q

n−1
n [an]n +Q1

2Q2
3 . . .Q

n
n+1[sln ]n+1 (3)

As for the absolute angular velocity of the nth link, it may be obtained as:

[ωωω ln ]1 =
n

∑
i=1

Q1
i
[
0 0 θ̇i

]T (4)

where Q1
1 = 13×3 is the identity matrix and where Q1

i = Q1
2Q2

3 . . .Q
i−1
i .
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A similar approach is used to define the positions of the centres of mass and the absolute angular velocities
of the actuator barrels and piston assemblies. The position of the centre of mass of the jth actuator barrel
measured from node A j is defined as sb j . Likewise, the position of the centre of mass of the jth actuator
piston assembly, measured from node B j, is defined as sp j . Both of these vectors are constant in a frame
X ′jY

′
j Z
′
j which is defined as having its X ′j axis directed from A j to B j while its Z′j axis is parallel to the axis of

the passive revolute joint at A j as shown in Fig. 2(c) and (d). The rotation matrix bringing the XiYiZi frame
parallel to the X ′jY

′
j Z
′
j is:

Qi
j′ =

cosγ j −sinγ j 0
sinγ j cosγ j 0

0 0 1

 (5)

where γ j is measured from the Xi axis to the X ′j axis. Finally, vector u j is defined as being directed from Ri

to A j where i = j when j = 1,2,3,4 and i = j+1 when j = 0. It is noted that this vector is constant in the
XiYiZi frame. With these definitions, the positions of the centres of mass of the nth actuator barrel and piston
assembly, for the case where n = 0,1, are obtained as:

[c̄bn ]1 = [un]1 +Q1
n′ [sbn ]n′ , [c̄pn ]1 = [un]1 +Q1

n′
(
ρn[in′ ]+ [spn ]n′

)
(6)

where i j′ is a unit vector directed along the X ′j axis. Similarly, the positions of the centres of mass of the nth

actuator barrel and piston assembly, for cases where n = 2,3,4, may be found as:

[c̄bn ]1 =
n−1

∑
j=1

[a j]1 +[un]1 +[sbn ]1

= [a1]1 +Q1
2[a2]2 + · · ·+Q1

2Q2
3 . . .Q

n−2
n−1[an−1]n−1 +Q1

2 . . .Q
n−1
n [un]n +Q1

2Qn−1
n Qn

n′ [sbn ]n′

(7)

[c̄pn ]1 =
n−1

∑
j=1

[a j]1 +[un]1 +ρn[in′ ]1 +[spn ]1

= [a1]1 +Q1
2[a2]2 + · · ·+Q1

2Q2
3 . . .Q

n−2
n−1[an−1]n−1 +Q1

2 . . .Q
n−1
n [un]n +Q1

2 . . .Q
n−1
n Qn

n′
(
ρn[in′ ]n′+[spn ]n′

)
(8)

Finally, the angular velocities of the jth actuator’s barrel and piston assembly, measured with respect to
ground and expressed in frame X1Y1Z1, can be computed as:

[ωωωb j ]1 = [ωωω p j ]1 =

0
0
γ̇ j

 ( j = 0,1) [ωωωb j ]1 = [ωωω p j ]1 = [ωωω l j−1 ]1 +Q1
2 . . .Q

j−1
j

0
0
γ̇ j

 ( j = 2,3,4) (9)

4. DYNAMIC MODELING

To develop the dynamic model for the rockbreaker, the Lagrange-Euler method was used with the joint
angles θi defined as the generalized coordinates. The Lagrange-Euler formulation can be described as:

d
dt

∂T
∂ θ̇i
− ∂T

∂θi
+

∂U
∂θi

= τi, i = 1,2,3,4 (10)

where T and U represent the total kinetic energy and potential energy, respectively, stored within the sys-
tem’s rigid bodies. The kinetic and potential energies can be decomposed into contributions from the links
(l), actuator barrels (b) and actuator pistons (p) such that T = Tl +Tb +Tp and U =Ul +Ub +Up with:

Tl =
1
2

mli
˙̄cT

li
˙̄cli +

1
2

ωωω
T
li Q

1
i+1Īli

(
Q1

i+1
)T

ωωω li , Ul =−geT
g

(
4

∑
i=1

mli c̄li

)
, i = 1,2,3,4 (11)
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Tb =
1
2

mb j
˙̄cT

b j
˙̄cb j +

1
2

ωωω
T
b j

Q1
j′ Īb j

(
Q1

j′
)T

ωωωb j , Ub =−geT
g

(
4

∑
j=0

mb j c̄b j

)
, j = 0,1, ...,4 (12)

Tp =
1
2

mp j
˙̄cT

p j
˙̄cp j +

1
2

ωωω
T
p j

Q1
j′ Īp j

(
Q1

j′
)T

ωωω p j , Up =−geT
g

(
4

∑
j=0

mp j c̄p j

)
, j = 0,1, ...,4 (13)

In these equations, mli , mb j and mp j represent the masses of the ith link, jth actuator barrel and jth actuator
piston assembly, respectively. Meanwhile, ˙̄cli , ˙̄cb j and ˙̄cp j represent the absolute velocities of each rigid
body’s centre of mass. The inertia matrix of the ith link measured in a frame parallel to the Xi+1Yi+1Zi+1
frame with origin at Cli is represented as Īli . Similarly, the inertia matrices of the jth actuator barrel and
piston assembly measured in reference frames parallel to the Y ′jY

′
j Z
′
j frame with origins at Cb j and Cp j ,

respectively, are represented as Īb j and Īp j . Finally, g = 9.80655 m/s2 is the gravitational acceleration and eg

is a unit vector parallel to the gravitational field (i.e., [eg]1 = [0,0,−1]T ). Using the Lagrange-Euler method,
the complete dynamic model can then be obtained as:

τττ = M(θθθ)θ̈θθ +v(θθθ , θ̇θθ)+g(θθθ) (14)

where the generalized inertia matrix M, the vector of the Coriolis and centrifugal effects v and the vector
of gravitational effects g can be divided into two parts: one due to contributions from the main links of the
rockbreaker (labeled link) and the other due to contributions from the hydraulic actuators (both barrels and
piston assemblies, labeled act) such that M(θθθ) = Mlink(θθθ)+Mact(θθθ), v(θθθ , θ̇θθ) = vlink(θθθ , θ̇θθ)+ vact(θθθ , θ̇θθ),
and g(θθθ) = glink(θθθ)+ gact(θθθ). Moreover, τττ = [τ1,τ2,τ3,τ4]

T is the vector of joint torques where τi is the
torque that is applied indirectly to revolute joint Ri by the hydraulic actuators.

To develop the dynamic model in the form presented in Eq.(14), symbolic math software (Maxima) was
used. Detailed expressions for the generalized inertia matrix (M), Coriolis and centrifugal effects term
(v) and gravitational effects term (g) are not presented in this article due to space limitations. Validation
of the analytical model was done by comparing the results with a model developed using the Simscape
Multibody toolbox in MATLAB/SIMULINK®. Computed joint torques from both models were found to
match to a precision of 1×10-6 N·m, which corresponds to the precision of the model parameters used in
the simulations. In order to improve the computational efficiency and reduce model complexity, simplified
versions of the dynamic model are introduced as follows:

τττ1 = Mlink(θθθ)θ̈θθ +vlink(θθθ , θ̇θθ)+g(θθθ) (15)

τττ2 = Mlink(θθθ)θ̈θθ +vlink(θθθ , θ̇θθ)+glink(θθθ) (16)

τττ3 = Mlink(θθθ)θ̈θθ +g(θθθ) (17)

In all cases, the contributions of the hydraulic actuators to M(θθθ) and v(θθθ , θ̇θθ) have been neglected although
their contribution to g(θθθ) has been maintained in the models described by Eqs. (20) and (22). These
simplified models will be compared to the full dynamic model in terms of joint torques corresponding to
prescribed rockbreaker trajectories. The objective is to identify a dynamic model of reduced complexity that
would still generate joint torques sufficiently close to those obtained from the full model. The incorporation
of a model-based component with a high accuracy into the control system will reduce the feedback control
gains and will help to maintain a reasonable stability region around the equilibrium point [11]. It is estimated
that joint torque errors less than approximately ±10% between a simplified dynamic model and the full
model described by Eq. (14) would contribute to meeting this objective. However, this would need to be
verified through implementation of a model-based controller on the actual rockbreaker.
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5. SIMULATION RESULTS

The use of the dynamic model in an adaptive control scheme requires it to be expressed in parameterized
form, which would be a complex task if the complete dynamic model were used. For this reason, simulations
using the simplified dynamic models that were introduced in Eqs. (15) – (17) are run and the resulting joint
torques errors compared to those obtained with the full dynamic model are analyzed. The goal is to identify a
simplified dynamic model whose deviation from the full model is small enough to allow a suitable automated
system performance through the use of a nonlinear dynamic model-based controller.

The simplified dynamic models are compared to the full dynamic model through the resulting joint torques
(i.e., the torques applied indirectly to joints Ri by the hydraulic actuators). On one hand, the absolute joint
torque error ∆τk,i at the ith joint will be computed as ∆τk,i = |τk,i−τi|where τi is the torque obtained from the
full dynamic model (from Eq. (14)) and τk,i (k = 1,2,3) is the one obtained from the kth simplified dynamic
model (Eqs. (15) – (17)). On the other hand, the relative joint torque error, defined as εk,i = (∆τk,i/τi) ·
100 (%) will also be computed and analyzed over the simulated trajectories. The relative joint torque error
is useful since it provides some perspective of the scale of the discrepancies between the different dynamic
models. However, in some instances, the relative error becomes very large due to the fact that the actual joint
torques (i.e., τi) are very small or equal to zero. In these cases, the absolute joint torque error, compared
to the magnitude of the corresponding joint torques obtained from the full dynamic model, give a better
indication of a simplified dynamic model’s adequacy.

Simulations are based on predefined trajectories obtained with a trajectory planning algorithm. The algo-
rithm that is used to generate the trajectories was developed for an actual rockbreaker system. Although the
algorithm will not be described in detail here, it is important to note that it leads to trajectories meeting the
following criteria:

• The flow rates to the hydraulic actuators do not exceed the allowable flow rates through the valves.

• The overall sum of flow rates to the hydraulic actuators does not exceed the hydraulic pump’s maxi-
mum flow rate.

• Trajectories ensure smooth ramp-up and ramp-down of joint velocities.

• Trajectories ensure that at least one hydraulic actuator is operating at its maximum available flow rate
at all times (to allow for the fastest motion possible).

• Trajectories maintain the breaker at an orientation as close as possible to vertical at all times (i.e.
φ = 270 degrees). Note that this is an operational requirement for the targeted application.

• Trajectories respect the mechanical limits of all joints.

Parameter values used in all simulations were taken from an actual rockbreaker and are provided in Appendix
A. The following two trajectories, referred to as trajectory 1 and trajectory 2, were used to compare the
simplified dynamic models to the full model:

• Trajectory 1: The tip of the breaker (i.e., point P) is displaced from pI1 = [6.50, −2.50, −0.50]T m
to pF1 = [2.55, 2.50, −0.50]T m while its orientation changes from φI1 = 288 degrees to φF1 = 270
degrees. This is a motion where the breaker moves between diagonally-opposed corner openings of
the grizzly within a horizontal plane located above the latter.

• Trajectory 2: The tip of the breaker (i.e., point P) is displaced from pI2 = [4.50, 0.00, −0.50]T m
to pF2 = [0.65, 4.95, 0.00]T m while its orientation changes from φI2 = 270 degrees to φF2 = 270
degrees. This is a motion where the breaker moves from a central location above the grizzly to an
arbitrary home position for the rockbreaker where it is parked when not in use.

CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium, 2017 7



Fig. 3. Cartesian trajectories of rockbreaker used for dynamic simulations: (a) elements of position p for trajectory 1,
(b) elements of position p for trajectory 2 and (c) orientation φ for trajectories 1 and 2.

Fig. 4. Simulation results of torque at R1 for trajectory 1: (a) computed joint torque using Eq. (14), (b) absolute joint
torque errors and (c) relative joint torque errors using Eqs. (15) – (17).

Fig. 5. Simulation results of torque at R2 for trajectory 1: (a) computed joint torque using Eq. (14), (b) absolute joint
torque errors and (c) relative joint torque errors using Eqs. (15) – (17).

Fig. 6. Simulation results of torque at R3 for trajectory 1: (a) computed joint torque using Eq. (14), (b) absolute joint
torque errors and (c) relative joint torque errors using Eqs. (15) – (17).
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Fig. 7. Simulation results of torque at R4 for trajectory 1: (a) computed joint torque using Eq. (14), (b) absolute joint
torque errors and (c) relative joint torque errors using Eqs. (15) – (17).

Fig. 8. Simulation results of torque at R1 for trajectory 2: (a) computed joint torque using Eq. (14), (b) absolute joint
torque errors and (c) relative joint torque errors using Eqs. (15) – (17).

The simulation results for trajectory 1 in terms of the full dynamic model’s computed joint torque τi as
well as the absolute and relative joint torque errors can be seen in Figs. 4 to 7. It can be observed that the
best approximation of the full dynamic model is represented by τττ1. Its proximity to the full dynamic model
suggests that the Mact θ̈θθ and vact terms have minimal impact on the system’s dynamics. However, this model
remains highly complex due to the vlink term and is therefore less than desirable for its implementation
in an adaptive control scheme. Furthermore, it may be observed in Fig. 4 (b) and (c) that ∆τ1,1 = ∆τ2,1
and ε1,1 = ε2,1. This may be explained by the fact that the differentiating term between both models is the
gravitational effects term which has no effect on the R1 joint torques. Looking at the plots of ε1,i and ε2,i in
Figs. 5 to 7, the considerable influence of the gravitational effect of the actuators gact on the joint torques,
accounting for as much as 8% of the joint torques computed from the full dynamic model, suggests that τττ2
is not a suitable simplified dynamic model. Lastly, as can be observed in Fig. 4(c), ε3,1 reaches 100% in
the central portion of the simulated trajectory (where θ̈i = 0) due to the complete omission of the v term
in τττ3 and the fact that g has no bearing on the swing joint at R1. However, the relative errors of τττ3 for the
subsequent joints (ε3,2, ε3,3 and ε3,4 as seen in Figs. 5 to 7) do not exceed 1%.

The simulation results for trajectory 2 are shown in Figs. 8 to 11. Many of the observations made for
trajectory 1 also apply to the simulation results of trajectory 2. It can be observed from Fig. 9(c) to Fig.
11(c) that the relative error ε2,i is quite considerable and even reaches approximately 10% at times, further
validating the claim that the gravitational effects due to the hydraulic actuators are considerable and should
not be ignored as was the case in [4–8]. Finally, in the case of trajectory 2, it may be observed that ε3,2, ε3,3
and ε3,4 always remain less than 2%.

From the results obtained from both trajectories 1 and 2, the simplified model τττ3 appears to be an accept-
able alternative to the full dynamic model for use in real world applications. Although the model for τττ3 may
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Fig. 9. Simulation results of torque at R2 for trajectory 2: (a) computed joint torque using Eq. (14), (b) absolute joint
torque errors and (c) relative joint torque errors using Eqs. (15) – (17).

Fig. 10. Simulation results of torque at R3 for trajectory 2: (a) computed joint torque using Eq. (14), (b) absolute joint
torque errors and (c) relative joint torque errors using Eqs. (15) – (17).

not seem ideal for the torques at the swing joint (i.e., τ1), it should be noted that the absolute error ∆τ3,1,
which reaches its maximum values during the velocity ramp-up and ramp-down portions of the trajectories
(as seen in Fig. 4(b) and Fig. 8(b)), remains relatively small in magnitude with respect to the actual torques
applied to this joint during those motions (as seen in Fig. 4(a) and Fig. 8(a)). Furthermore, it is believed that
these errors could be mitigated with the addition to τττ3 of a simplified term replacing the currently omitted
vlink term. The parameters within such a simplified term would need to be identified as part of the adaptive
control algorithm implementation.

Fig. 11. Simulation results of torque at R4 for trajectory 2: (a) computed joint torque using Eq. (14), (b) absolute joint
torque errors and (c) relative joint torque errors using Eqs. (15) – (17).
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6. CONCLUSION

This paper has investigated potential simplifications to the dynamic model of a hydraulic rockbreaker
with the goal of identifying a suitable model for use in a model-based controller. It was found that the
model proposed in Eq. (17), where the vector of Coriolis and centrifugal effects (v) is entirely neglected and
where the hydraulic actuators are only considered in static terms (i.e., their contribution to g) is an attractive
alternative to the full dynamic model. It allows for the computation of joint torques τ2, τ3 and τ4 (i.e., joint
torques which contribute to supporting the weight of the rockbreaker’s parts) with an error of less than 2%
measured relative to the torques obtained from the full dynamic model. The corresponding estimation of τ1,
however, is less accurate owing to the fact that it is not influenced by gravity. The investigation of how this
might be addressed through the inclusion of an additional term to compensate for the exclusion of v without
replicating its complexity is left to future work. The dynamic model described in this paper did not consider
viscous or Coulomb friction at the revolute and prismatic joints. It is believed, however, that friction has a
non-negligible effect on the system’s dynamics. Also left to future work is the inclusion of friction models
with coefficients needing to be identified through an adaptive control scheme.
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APPENDIX A

Table 1. Denavit-Hartenburg parameter values.

i ai (m) bi (m) αi (deg.)
1 0.349 1.049 90
2 3.397 0.000 0
3 2.642 0.000 0
4 2.219 0.000 0
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Table 2. Masses of links, actuator barrels and piston assemblies.

ml1 = 1029.59 kg, ml2 = 1313.70 kg, ml3 = 975.41 kg, ml4 = 2082.98 kg
mb0 = mb1 = 51.61 kg, mb2 = mb3 = mb4 = 134.96 kg, mp0 = mp1 = 33.52 kg, mp2 = mp3 = mp4 = 84.99 kg

Table 3. Positions of links’ centres of mass.

[sl1 ]2 =

−0.044
−0.432
−0.006

 m, [sl2 ]3 =

−1.618
0.044
−0.001

 m, [sl3 ]4 =

−1.865
0.082
−0.001

 m, [sl4 ]5 =

−1.001
0.126
0.002

 m

Table 4. Positions of actuator barrels’ centres of mass.

[sb0 ]
′
0 = [sb1 ]

′
1 =

0.396
0.000
0.000

 m, [sb2 ]
′
2 =

 0.703
−0.005
0.001

 m, [sb3 ]
′
3 = [sb4 ]

′
4 =

 0.703
0.005
−0.001

 m

Table 5. Positions of actuator piston assemblies’ centres of mass.

[sp0 ]
′
0 = [sp1 ]

′
1 =

−0.394
0.000
0.000

 m, [sp2 ]
′
2 = [sp3 ]

′
3 = [sp4 ]

′
4 =

−0.783
0.000
0.000

 m

Table 6. Positions of A j nodes with respect to Ri nodes.

[u0]1 =

−1.163
−0.375
0.419

 m, [u1]1 =

−1.163
0.375
0.419

 m, [u2]2 =

 0.318
−0.706

0

 m, [u3]3 =

−2.254
0.434

0

 m, [u4]4 =

−2.316
0.405

0

 m

Table 7. Inertial matrices of links (kg·m2).

[Il1 ]2 =

158.98 0.94 −0.63
0.94 65.74 −1.79
−0.63 −1.79 164.75

, [Il2 ]3 =

 50.53 622.48 −1.66
622.48 1079.78 0.03
−1.66 0.03 1468.53



[Il3 ]4 =

 797.82 −489.64 0.66
−489.64 347.07 −0.11

0.66 −0.11 1117.27

, [Il4 ]5 =

107.94 203.52 −3.73
203.52 1355.62 0.68
−3.73 0.68 1397.74



Table 8. Inertial matrices of actuator barrels (kg·m2).

[Ib0 ]0′ = [Ib1 ]1′ =

0.22 0.00 0.00
0.00 3.70 0.00
0.00 0.00 3.71

 , [Ib2 ]2′ =

 0.91 0.18 −0.07
0.18 31.90 −0.02
−0.07 −0.02 31.99

 , [Ib3 ]3′ = [Ib4 ]4′ =

 0.91 −0.18 0.07
−0.18 31.90 0.02
0.07 0.02 31.99



Table 9. Inertial matrices of actuator piston assemblies (kg·m2).

[Ip0 ]0′ = [Ip1 ]1′ =

0.035 0.00 0.00
0.00 2.49 0.00
0.00 0.00 2.50

 , [Ip2 ]2′ = [Ip3 ]3′ = [Ip4 ]4′ =

0.11 0.00 0.00
0.00 18.72 0.00
0.00 0.00 18.73
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