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ABSTRACT
Inspired by underactuated mechanical fingers, this paper demonstrates and optimizes the self-adaptive

capabilities of a 2-DOF Hoecken’s-Pantograph robotic leg allowing it to overcome unexpected obstacles
encountered during its swing phase. A multi-objective optimization of the mechanism’s geometric parame-
ters is performed using a genetic algorithm to highlight the trade-off between two conflicting objectives and
select an appropriate compromise. The first of those objective functions measures the leg’s passive adapta-
tion capability through a calculation of the input torque required to initiate the desired sliding motion along
an obstacle. The second objective function evaluates the free-space trajectory followed by the leg endpoint
using three criteria: linearity, stance ratio, and height-to-width.

Keywords: optimization; robotic leg; underactuation; linkage; kinetostatic analysis.

RÉSUMÉ
En utilisant une approche similaire aux mécanismes de doigts sous-actionnés, les capacités d’adaptation

d’une architecture de jambe robotique à deux DDL de type Hoecken’s-Pantographe sont optimisées dans cet
article afin de lui permettre de surmonter des obstacles imprévus lors de sa phase de vol. Une optimisation
multiobjectif des paramètres géomtriques du mécanisme a été effectuée afin de mettre en évidence l’op-
position existant entre deux objectifs contradictoires et choisir un compromis. Le premier de ces objectifs
mesure la capacité d’adaptation passive de la jambe en calculant le couple d’entrée requis pour amorcer le
glissement désiré le long d’un obstacle. La deuxième fonction objectif évalue la trajectoire de base suivie
par l’extrémité de la jambe en se basant sur trois critères : linéarité, ratio de la phase de support, et rapport
hauteur/largeur.

Mots-clés : optimisation ; jambe robotique ; sous-actionnement ; mécanisme à membrures ; analyse cinéto-
statique.
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1. INTRODUCTION

While the simplicity, energy efficiency, and speed of wheeled locomotion are hard to match, walking
robots are often a preferred alternative when navigating uneven terrains. Successful robotic leg designs
are often serial mechanisms comprised of several actuated joints, such as in the StarlETH [1] or the HyQ
[2] robots, or consist of much simpler (but very versatile) compliant links, as exemplified by the RHex
[3]. On the other hand, mechanical linkages can also guide the endpoint of a robotic leg using as few as a
single actuator and are largely unaffected by the payload while in stance phase conversely to designs using
compliant links. However, while the limited number of actuators required with the designs based on linkages
is a significant advantage, it is impossible for the leg to depart from the generated trajectory if the presence
of an obstacle requires an adaptation. The present paper proposes a solution to this issue.

Among linkages able to generate a suitable leg trajectory for a walking application, the combination of
the Hoecken’s linkage, also sometimes referred to as Chebyshev’s lambda mechanism, and a pantograph for
amplification purposes has been studied by many [4–6], including the authors [7]. In the present paper, the
geometric parameters of a two degree-of-freedom (DOF) variant of this architecture are, for the first time,
optimized to take advantage of its self-adaptive capabilities. The desired objective is to allow the leg to "give
in" without any sensing or control and slide along an obstacle following an unexpected collision, rather than
trying to pursue an unfeasible trajectory. While a similar behavior has been previously obtained by making
use of electronic reflex generation [8, 9], this effect is here intended to be obtained purely mechanically.

The proposed approach is directly inspired by the use of self-adaptive mechanisms in the field of under-
actuated robotic hands [10]: a single input force is distributed to several output phalanges, the motions of
which are triggered by contacts between the finger and the grasped object. With the use of preloaded springs
and mechanical limits, the closing sequence of the phalanges can be achieved without any control or sensors.
Similarly, a contact during the swing phase of the proposed leg mechanism passively triggers the secondary
DOF which allows the leg to depart from its trajectory to accommodate the obstacle.

Ultimately, using a purely mechanical solution to generate a complex behavior, such as obstacle overcom-
ing, can be more affordable than relying on the complex software control of multiple actuators, and could
prove to be useful for applications where environmental factors such as extreme temperatures or radiation
impact the use of electronic controllers.

2. MECHANISM DESCRIPTION

2.1. Geometry
The leg mechanism described in this paper can be separated in two basic linkages: a four-bar linkage

acting as a path generator, and a pantograph. More specifically, the geometric parameters of the four-bar are
initially matching the ones of the Hoecken’s linkage, although they will be altered following the optimization
described in Section 4. When driven by the rotation θ1 of the input crank, this linkage generates a trajectory
M1 suitable for a walking application due to the existence of a linear portion and the proportion of the cycle
(close to 70%) that is spent in this phase, as illustrated in Fig. 1a. The second element of the mechanism
is the pantograph, i.e. a linkage characterized by a constant ratio of the distance between its two guiding
points to the distance between either of its guiding points and its following point, see Fig. 1a. The pantograph
performs three functions in the mechanism, listed here by increasing order of importance for our application:

1. Amplify the trajectory M1, which is inputed to one of the pantograph’s guiding points.

2. Ensure that the leg endpoint (i.e. the following point) is the lowest point of the mechanism.

3. Add a second degree of freedom, θ2, to the mechanism. The associated motion M2 is applied to the
pantograph’s second guiding point, and therefore, also affects the position of the following point.
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2.2. Self-adaptive behavior
As is often the case with self-adaptive fingers where the motion of a phalanx may not be triggered until

contact is established with the grasped object, the secondary DOF θ2 is here constrained using a preloaded
spring and a mechanical limit. In normal operation (i.e. if no obstacles are encountered), this DOF is
therefore not triggered and the leg endpoint follows the free-space trajectory, illustrated in Fig. 1b, solely
generated by the rotation of θ1.
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Fig. 1. Description of the mechanism’s initial geometry: (a) constituent linkages, (b) simulation of the leg encountering
an obstacle during its swing phase and subsequent passive adaptation

If a collision occurs during the swing phase of the leg motion, the continued actuation of θ1 coupled with
the obstacle resistance at the point of contact cause an increase of the mechanism’s internal forces, which
is used to overcome the preloaded spring. Then, the resultant motion of θ2 combined to the rotation of θ1
allows the leg endpoint to depart from the free-space trajectory and slide along the obstacle. Similarly to
self-adaptive fingers, the preloading of the spring is set to be as weak as possible, while still being able to
prevent undesirable motion at the leg endpoint. Indeed, this spring only resists the adaptation movement and
does not store any useful energy.

In Fig. 1b, the passive adaptation induces a translation (denoted by the vector δδδ ) of the pantograph’s
guiding point, F , from its initial position (Ff ree−space) to a new location (Fadaptation). The displacement M2
between these two points can be generated by any motion generator, the simplest choices being a prismatic
joint (for which M2 is a straight line) or a revolute one (for which M2 is an arc), as in [7]. The nature of this
generator is however left arbitrary.

Due to the geometry of the pantograph linkage, the vertical component of δδδ must be negative to generate
a rising motion of the leg endpoint. A purely vertical translation of F would therefore seem advantageous,
but such a design would render the passive adaptation much more difficult, as will be shown in Section
3.1. At the other extreme, a completely horizontal δδδ makes adaptation very easy, but could not result in the
desired vertical motion of the leg endpoint along an obstacle. An intermediate orientation as illustrated in
Fig. 1b must therefore be selected for the allowed range of motion of point F.

CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium, 2017 3



2.3. Initial geometric parameters
Although several straight line linkages can be suitable for the generation of the free-space trajectory, the

Hoecken’s linkage, with only three links, was selected here for its simplicity. Its geometric parameters are
presented in Fig. 2 (with h and w denoting the height and width of the generated curve) and Table 1, where
li j refers to the distance between points i and j.
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Fig. 2. Hoecken’s linkage

Geometric Value
parameter

Coordinates of A (0.00 0.00)
Coordinates of B (2.00 0.00)

lAC 1.00
lBD=lCD=lDE 2.50

λ 180◦

Table 1. Initial geometry (four-bar)

Next comes the dimensioning and positioning of the pantograph. The geometry of this linkage can be
described using only two ratios:

• R is the amplification ratio which relates the sizes of similar triangles FGE and FHJ (see Fig. 3).

• α is the shape factor of triangles FGE and FHJ, defined as the ratio of lEG to lFG (see Fig. 3 again).
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Fig. 3. Geometry of the pantograph linkage with the guiding points either at their (a) closest or (b) farthest allowed
positions

An important consideration when designing the mechanical leg is to prevent the pantograph from reaching
a singular configuration, of which an indicator is the shape of the parallelogram EGHI: neither of its angles
should be allowed to become smaller than a threshold value defined by φlim. This condition allows to set a
design constraint on the permissible values of d, the distance between the guiding points E and F. First, the
law of cosines is used with triangle EFG in both limit configurations illustrated in Fig. 3, i.e.:

dmin
2 = l2

FG + l2
EG−2 · lFG · lEG · cos(φlim) (1a)

dmax
2 = l2

FG + l2
EG−2 · lFG · lEG · cos(π−φlim). (1b)

Eqs. (1a) and (1b) can be combined using the previously defined ratio α to establish yet another ratio,
dmax/dmin, which is maximal when α = 1, i.e. FGE and FHJ are isosceles triangles:

dmax

dmin
=

√
1+α2 +2α · cos(φlim)

1+α2−2α · cos(φlim)
. (2)
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The position of point E, one of the pantograph’s guiding points, is always the location of the four-bar’s
coupler point. Therefore, only six parameters remain unknown for the design of the pantograph:

• The x and y coordinates of Ff ree−space, the location of guiding point F during the free-space trajectory.

• The x and y coordinates of Fadaptation(max), the location guiding point F at the maximal position in
the chosen range of θ2.

• The pantograph’s R and α ratios.

As illustrated in Fig. 4, a translation δδδ max of F from Ff ree−space to Fadaptation(max) results in a shift of all the
points of the free-space trajectory by vector (R−1)δδδ max, thereby defining the maximal adaptation trajectory.
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Fig. 4. Dimensioning of the pantograph, (a) F = Ff ree−space,
(b) F = Fadaptation(max)

Geometric Value
parameter

Coordinates of
(-1.33 11.17)

Ff ree−space

Coordinates of
(2.00 7.35)

Fadaptation(max)
lEG = lFG = lHI 4.73
lEI = lGH = lIJ 11.40

Table 2. Initial geometry (pantograph)

Solely to ensure a unique solution for the dimensioning of the pantograph and simplify the subsequent
optimization, six constraints have been selected arbitrarily. Using Fig. 4 as a reference, these constraints are
listed below:

• Ensure a sufficiently large total workspace (i.e. the area theoretically reachable by the leg’s endpoint
following motions of θ1 and θ2).
⇒Constraint C1: the vertical distance (R−1)δδδ max

T y between the free-space and maximal adaptation
trajectories is three times the height R ·h of the free-space trajectory:

(R−1)δδδ max
T y = 3Rh. (3)

• Allow for easy passive adaptation of the leg to collisions. As will be detailed in Section 3.1, the ori-
entation of δδδ has a critical effect on the torque required for the leg to slide along the surface of an
obstacle. A compromise must be selected between the ease of adaptation and the proportion of the
workspace located directly above the free-space trajectory.
⇒Constraint C2: the horizontal distance (R− 1)δδδ max

T x between the free-space and maximal adap-
tation trajectories is arbitrarily chosen at half the width Rw of the free-space trajectory:

(R−1)δδδ max
T x = Rw/2. (4)
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• Prevent interference between the leg’s endpoint and Hoecken’s linkage.
⇒ Constraint C3: the maximal adaptation trajectory is below the lower limit of the four-bar’s en-
velope. For the Hoecken’s linkage, the distance a between the origin and the maximal adaptation
trajectory, c.f. Fig. 4, is therefore chosen equal to the length of the crank:

a = lac. (5)

• Keep the mechanism as compact as possible.
⇒ Constraint C4: the centers of the maximal adaptation trajectory and that of M1, the trajectory
generated by the Hoecken’s linkage, are horizontally aligned.
⇒Constraint C5: the shape factor α of the pantograph is set at 1.

• Avoid singularities for all possible configurations of the mechanism.
⇒Constraint C6: the limit angle φlim is set at 30◦ and Eq. (2) thus becomes:

dmax

dmin
= 3.73. (6)

The unique geometric parameters satisfying these six constraints for the Pantograph linkage are computed
using an iterative method and are shown in Fig. 4 and Table 2 (the origin is still coincident with point A of
the four-bar).

3. PERFORMANCE EVALUATION

3.1. Ease of adaptation
The actuation torque τin (acting on θ1) required to perform the normal motion as well as the adaptation

described in Section 2.2 can be expressed as a function of the preloading force fp (acting on θ2), the friction
coefficient µ at the obstacle contact location, and the mechanism’s configuration at the moment of this
contact. This relationship can be found out by performing a static analysis on the mechanism. Two classes
of contacts can be defined: in a Type I contact, the collision occurs at the leg endpoint and the orientation of
the normal unit vector n at this point depends on the obstacle, whereas, in a Type II contact, collision occurs
elsewhere along the terminal link of the leg and the orientation of the latter changes n. In both cases, the
unit vector t is defined tangent to the relative sliding motion of the leg and the obstacle (c.f. Fig. 5). Using a
Coulomb friction model with a coefficient µ and considering the edge of the friction cone, the contact force
f is first expressed as:

fT t = µfT n. (7)

For a Type I contact, f can also be written as:

f = J∗−T
τττ, (8)

where τττ =
[
τin − fp

]T
and J∗ is a square submatrix of the mechanism’s Jacobian, mapping the endpoint

linear velocity v to the velocities of the DOFs, i.e.:

v = J∗θ̇θθ =
[
v1 v2

]
θ̇θθ , (9)

with θ̇θθ =
[
θ̇1 θ̇2

]T
. The matrix J∗ can be interpreted geometrically as

[
v1 v2

]
where vi is the derivative of

the leg endpoint’s position with respect to θ̇i. As illustrated in Fig. 5a, v1 is always tangent to the freespace
trajectory while the orientation of v2 is tangent to M2, the motion associated to θ2. More specifically, if a
prismatic joint is used for M2 its direction would be parallel to the vector δδδ .
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For a Type II contact, one can similarly define local velocities vi by evaluating J∗ at point P’ which can
be very conveniently obtained using screw theory [11]. Eqs. (7) to (9) can then be rearranged to yield the
expression of the actuation torque required to overcome the preloading of the triggered motion:

τin =
−v1

T (n+µt)
v2T (n+µt)

fp. (10)
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f Tn f Tt

f

Leg

P2'

v 1

v 2 n

tRelative motion
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Fig. 5. Velocities and forces at the contact points, with either (a) Type I or (b) Type II contacts.

One might think that an easy way to decrease the ratio τin/ fp would be to maximize the dot product
v2

T (n+µt), which is the denominator of Eq. (10), by making v2 parallel to n. If a vertical obstacle and the
generation of M2 by a prismatic joint are assumed, this strategy would be equivalent to making the vector δδδ

horizontal. In turn, this would result in an unacceptable reduction of the available workspace directly above
the free-space trajectory, which explains the compromise imposed by the pantograph design constraints C1
and C2.

An example of the predicted evolution of the input torque during the sliding motion of the leg following
a Type II contact, calculated for the initial geometric parameters assuming µ = 0, is shown in Fig. 6. The
maximal value of τin/ fp is in this case 8.21 at the very beginning of the sliding motion when the leg has
not yet departed from the free-space trajectory. This maximal value quantifies the ease of adaptation to any
obstacle for which a contact would be established at this particular point.

5.5

6.0

6.5

7.0

7.5

8.0

8.5τin/fp

Contact progression (θ1)

Maximal τin/fp ratio for this contact location

-5° 0° 5° 10°
5.0

15°-10°

Fig. 6. Required input torque for an adaptation following a Type II contact with µ = 0 and a collision point at
(9.5,−6.0)
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A similar contact simulation can be performed for all possible collision points as illustrated in Fig. 7a.
These points form the adaptation workspace, which is a smaller subset of the total workspace (points reach-
able by the endpoint following rotations of θ1 and θ2). Indeed, no collision can occur at points located above
the terminal link, such as point P in Fig. 7a, since they are not swept by the leg during normal motion along
the free-space trajectory. A variation of the initial geometry is therefore introduced to increase the area of
this adaptation workspace, referred to as the workspace-maximizing shape, in which the terminal link is
altered so that it is vertical at the beginning of the swing phase. This increases the range of possibly over-
comable obstacles (c.f. Fig. 7b). It is important to note that altering the shape of this link without changing
the coordinates of the joints still affects the τin/ fp ratio since the contact location and the orientation of n are
different. Indeed, all possible obstacle contacts occur at the endpoint (Type I) for the workspace-maximizing
shape which has the drawback of increasing the required input torques for adaptation.

0

τin/fp

10

12.5

7.5

5

2.5

Type I 
contacts

Total workspace

P

(a) (b)

Fig. 7. Required input torque for all possible collision points with µ = 0, and different shapes of the terminal link: (a)
straight terminal link, (b) workspace-maximizing shape with n = [1 0]T

Since it is numerically faster to evaluate the required torque for Type I contacts, the adaptation perfor-
mance index Iadap proposed here is based on the workspace-maximizing shape of the terminal link. As-
suming vertical obstacles (n = [1 0]T ) and no friction (µ = 0), the τin/ fp ratio is evaluated for all points
comprising the swing phase of the free-space trajectory, as plotted in Fig. 8, based on the geometry illus-
trated in Fig. 7b. The value of Iadap is defined as the root mean square (RMS) of the ratio τin/ fp along this
curve, which is equal to 6.23 for the initial geometry of this particular example.

τin/fp

Location along the flight phase
100%0% 50%

max : 10.56

Iadap : 6.23

0

12.5

10

7.5

5

2.5

Fig. 8. Evaluation of Iadap for the initial geometry
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While this index assumes only endpoint contacts with vertical obstacles, there still exists a direct cor-
relation between Iadap and the torque required for a straight terminal link to slide along an obstacle. The
trade-off between the adaptation workspace area and the required torque for adaptation, at the heart of which
is the shape of the terminal link, can therefore be addressed at a later stage of the design. There however
exists an other important drawback when favoring endpoint (i.e. Type I) contacts with obstacles: potential
interference after a successful adaptation. An interference is here defined as a contact on the back of the leg
which prevents it from returning to the free-space trajectory. This effect, illustrated in Fig. 9, is even more
pronounced when the pantograph is operated in what is referred to, in the literature, as the "ostrich mode"
[4], i.e. the pantograph’s links are located lower than the guiding points.

(a)

Interference

(b)

Interference

(c)

Fig. 9. Possible interference between the pantograph and the obstacle after adaptation: (a) straight terminal link,
no interference (b) workspace-maximizing terminal link, slight interference, (c) "ostrich" pantograph configuration,
important interference.

3.2. Free-space trajectory
The quality of the free-space trajectory is another key element to consider during the design. The associ-

ated performance index is, in addition to Iadap, a second basis for comparison between various geometries.
Since this trajectory is only a scaling-up of M1, generated by the four-bar linkage, it is easier to directly
evaluate the latter. To this aim, three criteria scored on a scale from 0 to 100% are defined:

• Stance phase linearity: the vertical difference s between the top and bottom points of the stance phase
is compared to the total height h of the trajectory (in order to account for the transition between swing and
stance phases, their widths are arbitrarily set at 95% of w, the total trajectory width, as shown in Fig. 10):

lin% =
(

1− s
h

)
×100% (11a)

• Stance phase ratio: the fraction of the input crank cycle that is spent in the stance phase is compared with
the target fraction chosen at 0.6:

sta% = min
((stance duration

0.6

)
,1
)
×100% (11b)

•Height-to-width ratio: in order to penalize designs generating trajectories flatter than that of the Hoecken’s
linkage (h/w = 0.19), the height-to-width ratio is compared to this latter value:

hwr% = min
(( h/w

0.19

)
,1
)
×100% (11c)
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A free-space trajectory quality index Itr j combining the stance phase linearity, stance phase ratio, and
height-to-width ratio criteria into a single performance index is then defined:

Itr j = 1− lin%
100%

· sta%
100%

· hwr%
100%

(12)

Table 3 details the calculation of Itr j for the initial geometric parameters listed in Table 1. The obtained
value, 0.03, is excellent although the mechanism fared much worse when its passive adaptation was evalu-
ated, with an Iadap of 6.23. It is of course impossible to minimize simultaneously both indices to satisfy the
two very different objectives, and a compromise between them must be investigated.

Swing phase

Stance phase

w

h

s

Fig. 10. Hoecken’s linkage trajectory, with points drawn each
10◦ rotation of the input crank.

Linearity score 98.6%
Stance ratio score 98.3%

Height-to-width score 100%
Itrj 0.03

Table 3. Evaluation of Itr j for the
initial geometry

4. OPTIMIZATION OF THE GEOMETRY

Having defined two conflicting performance indices, a multi-objective optimization can be performed
on a search space comprising all possible linkages generating the trajectory M1, in order to visualize the
associated Pareto front. For the candidate geometries comprising the Pareto set, i.e. located on this front, a
decrease of one objective function can only lead to an increase of the other, so their overall merits depend
solely on the relative importance given to these two criteria.

For the purpose of this optimization, the search space is limited to the parameters of the crank-rocker four-
bar linkage, the geometry of which is defined by three variables: lAB, lCD and lBD. Two additional variables,
lDE and λ , position the coupler point E which is connected to the pantograph. Table 4 describes the allowed
ranges for these variables, which, along with the inequality constraints defined in Eqs. (13a-c), ensure that
the unit-length crank is able to perform a full revolution without encountering a singular configuration.

As described by the flowchart shown in Fig. 11a, both indices Itr j and Iadap are assigned to a candidate
four-bar linkage by first determining its optimal orientation, minimizing Itr j, and then, generating the unique
pantograph linkage satisfying constraints C1 to C6 (previously described in Section 2.3) for this particular
four-bar, which allows to compute Iadap.

Variable Description Limits Inequality Constraints
lAB Base link length 1.1−10

lAB + lBD > lCD +1 (13a)

lCD + lBD > lAB +1 (13b)

lAB + lCD > lBD +1 (13c)

lCD Coupler link length 1.1−10
lBD Rocker link length 1.1−10
lDE Additional distance to coupler point 0.1−10
λ Coupler link shape 0−2π

Table 4. Conditions for the generation of a suitable candidate geometry

Due to the highly non-linear nature of the problem, a genetic algorithm provided by MATLAB’s Optimiza-
tion Toolbox, is used to explore the search space and find near-optimal solutions. The population size was
fixed at 100 individuals, of which the first generation was comprised of the initial geometry and 99 randomly
generated four-bar linkages. The algorithm was allowed to run for 100 generations and the fitness of the
best individuals obtained is plotted in Fig. 11b.
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New parameters (lab, lbd, lcd, lde, λ)

Computation of trajectory M1

Evaluation of Itrj

Generation of the pantograph 
(based on C1 to C6)

Evaluation of Iadap

Four-bar is rotatedBest Itrj ? 

Yes
No

(a)

Iadap

Itrj

10

0.8
0
0 0.40.2 0.6

2

4

6

8

Selected geometry

Initial geometry

(b)
Fig. 11. Geometric optimization using a genetic algorithm: (a) evaluation sequence of a candidate geometry (b) Pareto
set found after 100 generations

As an example, a specific geometry (described in Fig. 12 and Table 5), featuring a remarkable improve-
ment of Iadap from 6.23 to 1.27 at the cost of a deterioration of Itr j from 0.03 to 0.35 compared to the initial
parameters, can be chosen. The ease of adaptation can be further improved by using a straight terminal link,
which would ensure Type II contacts for a large portion of the swing phase.

Adaptation workspace

λ

A
C

B

D

F
G

E

H

I

J

Fig. 12. Illustration of the selected geometry

Geometric Value Geometric Value
parameter parameter

Coord. of A (0 0) lAC 1.00
Coord. of B (4.72 -3.83) lBD 6.17

Coordinates of
(4.08 3.14)

lCD 4.99
Ff ree−space lDE 1.82

Coordinates of
(5.27 1.84)

lEG = lFG = lHI 1.75
Fmax.adaptation lEI = lGH = lIJ 9.19

λ 270◦

Table 5. Geometric parameters of the selected design

As is clear from Fig. 13 and Table 6, the main drawback of this design is the reduction of the stance phase
duration from 59% to 44% of the leg cycle. A possible solution could be to increase the number of legs, or
to alter the angular velocity of the input crank using, for instance, non-circular gears or cams.

Location along the flight phase

τin/fp

2

0

1

100%0% 50%

max : 1.88

Iadap : 1.27

(a)

Swing phase

Stance phase

(b)
Fig. 13. Evaluation of (a) Iadap and (b) Itr j for the selected design. Points
are drawn each 10◦ rotation of the input crank.

Linearity 93.3%
Stance ratio 73.4%

Height-to-width ratio 95.4%
Itrj 0.35

Iadap 1.27

Table 6. Summary of the perfor-
mance indices
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Fig. 14. Mechanism simulation using MSC Adams

A validation of the proposed leg mechanism was performed using the MSC Adams dynamic simulation
package (Fig. 14) and experiments with a single-leg prototype are currently being undertaken.

5. CONCLUSIONS
In this paper, the passive reconfiguration of a Hoecken’s-Pantograph robotic leg mechanism due to the use

of a second triggered DOF, in a similar manner as underactuated mechanical fingers, is investigated. The ge-
ometric parameters of the mechanism were optimized in order to allow it to efficiently slide along obstacles
following contacts occurring during its swing phase while retaining an efficient free-space trajectory for the
leg endpoint, and the Pareto front representing the trade-off between these objectives was highlighted.
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