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ABSTRACT 
It has long been desired to unify the topological model and parametric model, i.e., do type synthesis 

and kinematics analysis under a unified framework, in the field of mechanisms and robotics. This calls 

for a mathematical tool that makes analytical description, formulation and operation possible for both 

finite and instantaneous motions. The authors’ previous works show that screw theory is a powerful tool 

to achieve this goal, which contains finite screws and instantaneous screws to respectively describe finite 

and instantaneous motions. This paper presents a systematic method to unify type synthesis and 

kinematic analysis of parallel mechanisms (PMs) under the umbrella of screw theory. Firstly, the 

topological and parametric models of a PM, its limbs and joints are formulated employing finite and 

instantaneous screws, respectively. The relationship between these models are built using composition 

properties and derivative mapping of the two kinds of screws. Then, a general process to do type 

synthesis and kinematic analysis of PMs is given using these models, in which all the procedures are 

based upon algebraic and analytical screw operations. Finally, three-DOF spherical PMs (SPMs) are 

taken as an example to verify the validity of the proposed method and illustrate the whole process. 

Keywords: parallel mechanisms; screw theory; type synthesis; kinematic analysis; finite screw. 
 

UNIFIANT SYNTHÈSE DE TYPE MOUVEMENT FINI ET ANALYSE CINÉMATIQUE 

MOUVEMENT INSTANTANÉ DE MÉCANISMES PARALLÈLES PAR THÉORIE DES VIS 

RÉSUMÉ 
Les chercheurs désirent depuis longtemps unifier le modèle topologique et le modèle paramétrique, 

c’est-à-dire faire la synthèse de type et l’analyse cinématique sous un cadre unifié, dans le domaine des 

mécanismes et de la robotique. Cela nécessite un outil mathématique qui rend possible la description 

analytique, la formulation et le fonctionnement possibles pour les mouvements finis et instantanés. Les 

travaux antérieurs des auteurs montrent que la théorie des vis est un outil puissant pour atteindre cet 

objectif, qui contient des vis finies et des vis instantanées pour décrire respectivement des mouvements 

finis et instantanés. Cet article présente une méthode systématique pour unifier la synthèse de type et 

l‘analyse cinématique des mécanismes parallèles (PMs) sous l’égide de la théorie des vis. Premièrement, 

les modèles topologiques et paramétriques d’un PM, de ses membres et de ses articulations sont formulés 

en utilisant des vis finies et instantanées, respectivement. La relation entre ces modèles est construite à 

partir des propriétés de composition et de la cartographie dérivée des deux types de vis. Ensuite, un 

procédé général de synthèse de type et d’analyse cinématique des PM est donné en utilisant ces modèles, 

dans lesquels toutes les procédures sont basées sur des opérations de vis algébriques et analytiques. Enfin, 

on prend comme exemple un PM sphérique à trois DOF (SPM) pour vérifier la validité de la méthode 

proposée et illustrer l’ensemble du processus. 

Mots-clés : mécanismes parallèles; théorie des vis; synthèse de types; analyse cinématique; vis fini. 
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1 INTRODUCTION 
It has long been desired to unify type synthesis and kinematic analysis of robotic mechanisms into a 

general process using a consistent theoretical package. In this fundamental and challenging issue, a 

prerequisite and essential step is to select or develop an effective mathematical tool, which enables the 

analytical description, formulation and operation of both finite and instantaneous motions to be 

implemented, resulting in topological and parametric models that are connected algebraically. At present, 

there are three available mathematical tools at hand, i.e. matrix group, dual quaternion and screw theory. 

The matrix group was proposed by Lie and introduced to describe the rigid body motion by Klein in 

Erlangen program. Using Lie subgroups of SE(3) and its composite manifolds to describe the finite 

motions of joint, serial and parallel mechanisms [1], Hervé [2] gave a method to formulate topological 

models and did type synthesis of parallel mechanisms (PMs). Li and Hervé [3, 4] synthesized many PMs 

with different motion patterns employing matrix groups and manifolds. By utilizing Lie algebra se(3) of 

SE(3) to describe instantaneous motions, Brockett [5] applied the exponential mapping between SE(3) 

and se(3) to relating topological model for type synthesis and parametric model for kinematic analysis of 

serial mechanisms. This work was extended and applied to PMs and other kinds of mechanisms. It 

should be noted that two barriers are encountered when using matrix groups for finite motion 

composition to formulate topological models. One barrier comes from the fact that matrix group 

representations of finite motions cannot be directly expressed by Chasles’ axis with angular and/or linear 

displacement about the axis, leading to a complicated description of rigid body motion. The other barrier 

arises from the inability to algebraically implement a finite motion composition for matrix form by using 

Baker-Campbell-Hausdorff formula. Thus, even though parametric models can be no doubt given by Lie 

algebra se(3), topological models of many PMs cannot precisely be obtained using the existing matrix 

group based method because they can no longer be formulated by the group products of a few Lie 

subgroups of SE(3). 

Dual quaternion representation of rigid body motion can be traced back to description of rotations 

utilizing Euler’s four-square identity, Euler-Rodrigues parameters and Hamilton quaternions. As far as 

the authors know, Perez and McCarthy [6] are possibly the first to use dual quaternions to do finite and 

instantaneous motion analyses of serial kinematic chains, resulting in kinematic synthesis and simulation 

models. They used unit dual quaternions and unit pure dual quaternions to respectively describe finite 

and instantaneous motions, because the algebraic structure of the former is a double cover of SE(3) 

whose Lie algebra in turn constitutes the latter. By means of group theory, Selig [7] and Dai [8] 

investigated algebraic properties of the exponential and Cayley mappings between unit dual quaternions 

and unit pure dual quaternions, leading to a clear indication of the relationship between finite and 

instantaneous models. Then, the dual quaternions representation was extended to deal with dynamics 

problems through applying high-dimensional Clifford algebra. Although unit dual quaternions can 

describe both finite and instantaneous motions and their relationship, they are not the simplest forms of 

rigid body motions. The redundancy in dual quaternion representation may cause complexity in 

analytical operations of finite motions. Furthermore, the Rodrigues formula with dual angles is not the 

simplest form of the Baker-Campbell-Hausdorff formula in composition of finite motions. 

Screw theory was firstly proposed by Ball and has been developed to be a powerful and effective tool 

in fields of mechanisms and robotics. As shown in the authors’ previous work [9-11], finite and 

instantaneous screws can describe finite and instantaneous motions in concise and non-redundant forms 

and can be analytically composited. The algebraic structures of the sets of these two kinds of screws were 

revealed and the derivative mapping between them was built. All these achievements show that screw 

theory has the potential to unify type synthesis and kinematic analysis into a general and consistent 

process, which can overcome the shortcomings of the above matrix group and dual quaternion based 

methods. 

Mainly drawing on screw theory, this paper proposes a systematic method to unify type synthesis in 

finite motion level and kinematic analysis in instantaneous level of PMs. The paper is organized as 
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follows. Having a brief review of the state-of-the-art of the existing methods based upon different 

mathematical tools to uniformly describe finite and instantaneous motions in Section 1, Section 2 

presents the new method to formulate topological and parametric models of a PM, its limbs and joints 

using finite and instantaneous screws. In Section 3, a general process based upon algebraic and analytical 

screw operations to do type synthesis and kinematic analysis of PMs is given using these models. Three-

DOF spherical PM (SPM) is taken as an example to verify the validity of the proposed method and 

illustrate the whole process in Section 4 before the conclusions are drawn in Section 5. 

2 SCREW THEORY BASED TOPOLOGICAL AND PARAMETRIC MODELS 

2.1 Finite and Instantaneous Motions of a Rigid Body 

According to Chasles theorem, a finite motion of a rigid body from initial pose (pose 1) to arbitrary 

pose (pose 2) can be equivalently regarded as a rotation about the Chasles axis followed by a translation 

along that axis as shown in Fig. 1(a), which can be described by a finite screw fS  in quasi-vector [9] 

form as 

2tan
2
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f f f

t
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where fs  and fr  denote the unit vector and position vector of the finite motion axis,   and t  are the 

angular displacement about and linear displacement along that axis with respect to the initial pose. 

 

                 
Fig. 1. Finite and instantaneous motion of a rigid body: (a) finite motion; (b) instantaneous motion. 

 

The derivative of fS  at the initial pose ( 0   and 0t  ) where the finite motion axis is coincident 

with the instantaneous motion axis at the instant has been derived as [9] 
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which is exactly an instantaneous screw in vector form as shown in Fig. 1(b) 
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where   and v  are the angular velocity and linear velocity about/along the instantaneous motion axis. 

Eq. (3) indicates that there exists a derivative mapping between finite and instantaneous screws. Using 

these two kinds of screws and their relationship, the topological and parametric models of one-DOF 

joints, a limb and a PM will be formulated. 

2.2 Topological and Parametric Models of One-DOF Joints 

In Eq. (1) and Eq. (3),   and t ,   and v  can be regarded as variables. Thus, the finite and 

instantaneous motions generated by one-DOF joints, a limb and a PM can be described by finite screw 

sets and instantaneous screw systems. In this way, the topological and parametric models can be 

consistently formulated using screw theory. 

 

                 
Fig. 2. Finite and instantaneous motions of one-DOF joints: (a) R joint; (b) P joint. 

 

As shown in Fig. 2(a-b), topological and parametric models of a revolute (R) joint and a prismatic (P) 

joint can be obtained as 
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(a) P joint: 
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where  ,RfS  (  ,PfS ) and  ,RtS  (  ,PtS ) are finite screw sets and instantaneous screw systems 

generated by the R (P) joint, the denotations of Rs , Rr , R , R  and Ps , Pt , Pv  can be referred to the 

symbols in Eq. (1) and Eq. (3). According to the derivations in [9] and Eq. (3), the derivative mapping 

between the topological and parametric models of one-DOF R and P joint can be built as 
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2.3 Topological and Parametric Models of a Limb 

Considering a limb (serial kinematic chain) constituted by n one-DOF joints as shown in Fig. 3, the 

finite and instantaneous motions realized by its end-effector are the compositions of those generated by 

all its joints. As finite screws can be analytically composited by screw triangle product “ ” [9] and 

instantaneous screws can be linearly added, the topological and parametric models of the limb can be 

formulated as follows. 

 

 
Fig. 3. Finite and instantaneous motions of a limb. 
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where  ,LfS  and  ,LtS  are the finite screw sets and instantaneous screw systems realized by the end-

effector of the limb,  ,L,f kS  and  ,L,t kS  ( 1,2, ,k n ) are the finite screw sets and instantaneous 

screw systems generated by the kth joint in the limb. The expressions for  ,L,f kS  and  ,L,t kS  can be 

referred to Eqs. (6-9). 

According to the associativity and derivative laws of screw triangle products [9], the following 
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From above relationship, the derivative mapping between the topological and parametric models of 

the limb can be built as 
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2.4 Topological and Parametric Models of a PM 

As shown in Fig. 4, a PM is composed of l limbs. Because all the l limbs share the same end-effector, 

i.e., the moving platform of the PM, the finite and instantaneous motions realized by the moving platform 

are the intersection of those generated by all these limbs. In this way, we can formulate the topological 

and parametric models of the PM as 

 

 
Fig. 4. Finite and instantaneous motions of a PM. 

 

       ,PM ,1 ,2 ,f f f f lS S S S  (14) 
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where  ,f iS  and  ,t iS  ( 1,2, ,i l ) are the finite screw sets and instantaneous screw systems 

generated by the ith limb. Their expressions can be formulatd using Eq. (10) and Eq. (11). Through 

regarding the expressions of  ,f iS  as simultaneous equations,  ,PMfS  can be obtained by analytical 

derivations. Because  ,t iS  are linear spaces,  ,PMtS  can be solved using linear algebra. 

The differential of Eq. (14) at the initial pose of the PM is 
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Substituting Eq. (13) to Eq. (16), yields 
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Hence, the derivative mapping between the topological and parametric models of the PM can be built 

using Eq. (15) and Eq. (17). 
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Using finite and instantaneous screws to describe finite and instantaneous motions of a rigid body, 

one-DOF joints, a limb and a PM, the topological and parametric models of a PM, its limbs and joints are 

formulated. In this manner, type synthesis and kinematic analysis of PMs can be carried out under the 

concise and consistent theoretical package of screw theory. Unlike methods purely using instantaneous 

screws [12, 13], the method proposed in this paper do type synthesis of PMs in finite motion level. 

3 TYPE SYNTHESIS AND KINEMATIC ANALYSIS BY SCREW THEORY 
Having the topological and parametric models formulated by screw theory at hand, type synthesis and 

kinematic analysis can be unified in the following process. 

Step 1: Describe the expected motion pattern of PMs using finite screw set. 

Step 2: Formulate the whole limb bonds based upon Eq. (14) and obtain all the feasible limb structures 

with proper arrangements of joints using Eq. (10). 

Step 3: Derive the assembly conditions and actuation arrangements using Eq. (14), synthesize all the 

PMs with expected motion pattern. 

Step 4: Given a desired PM with specific topological structure, obtain the instantaneous screw system of 

it based upon Eq. (17) and Eq. (18). 

Step 5: Formulate Jacobian matrix of the PM which is ready for applying in velocity, acceleration, 

stiffness and dynamic analysis. 

As shown in Fig. 5, all the procedures in this process are completely based upon algebraic and analytical 

operations which have been given in Section 2. 

In the next section, an example will be given to illustrate this process more clearly. 

 

 
Fig. 5. Type synthesis and kinematic analysis of PMs using screw theory. 
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In this section, type synthesis and kinematic analysis of SPMs will be given to shown the validity of 

the screw theory based method proposed in Sections 2 and 3. 
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4.1 Type synthesis of SPMs 

The expected motion pattern of a SPM can be formulated by finite screw set as 

  3
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where point O is the spherical center of the SPM. Using the properties of screw triangle product [9], Eq. 

(19) can be rewritten as 
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where as , bs  and cs  are three independent unit vectors. Using Eq. (10), it is easy to see that Eq. (20) can 

be equivalently generated by a serial kinematic chain RaRbRc constituted by three R joints, whose axes 

pass through the fixed point O and are not in the same plane. 

According to Eq. (14), a limb bond  ,f iS  of SPM should be a subset of Eq. (20). Thus, six standard 

 ,f iS  can be formulated through adding zero, one or two translational/rotational factors. 
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2tan 2 tan 2 tan 2 tan
2 2 2 2

c b ac b a
f l

O c O b O a

t
              

           
             

0s s s s
S

r s r s r s r s s
 (26) 

which correspond to six standard limb structures obtained by adding zero, one or two P/R joints to the 

limb RaRbRc, i.e., RaRbRc, P1RaRbRc, R1RaRbRc, P1P2RaRbRc, R1R2RaRbRc, P1R2RaRbRc. It should be 

noted that R denotes a R joint whose axis do not pass through point O. 

By utilizing the properties of screw triangle product, it can be proved that arbitrarily changing the 

joint locations in these six standard limbs will always results in feasible limb structures whose limb bond 

 ,f iS  satisfying the condition    ,SPM ,f f iS S . 
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For example, a four-DOF limb structure RaR1RbRc can be obtained by changing the location of R1 in 

R1RaRbRc. According to Eq. (10),  ,f iS  generated by RaR1RbRc can be formulated as 

 
III

11
,

R
1 1

2tan 2 tan 2 tan 2 tan
2 2 2 2

c b ac b a
f l

O c O b O a

          
         

          

s s ss
S

r s r s r sr s
 (27) 

Eq. (27) can be rewritten as 

 
 

      

III,
R

11

1 1

2 tan 2 tan 2 tan
2 2 2

exp
2 tan

exp exp2

c b ac b a

O c O b O a

f l

a a

O a a O a a

  



 

      
      

        
   

  
       

s s s

r s r s r s
S

s s

r s r r s s

 (28) 

The first three factors in Eq. (28) are the same as those in  ,SPMfS . Hence,    
III,SPM ,

R
f f l

S S  is 

satisfied, which indicates that RaR1RbRc is a feasible limb structure of SPMs. 

Another example is a five-DOF limb structure RaP1R2RbRc obtained from P1R2RaRbRc. Its  ,f iS  is 

 
VI

22
, 1

PR
2 2 1

2tan 2 tan 2 tan 2 tan
2 2 2 2

c b ac b a
f l

O c O b O a

t
            

           
            

0s s ss
S

r s r s r sr s s
 (29) 

Eq. (29) can be rewritten as 

 
 

        

VI,
PR

22
1

2 2 1

2 tan 2 tan 2 tan
2 2 2

exp
2 tan

exp exp exp2

c b ac b a

O c O b O a

f l

a a

O a a O a a a a

t

  



  

      
      

        
   

    
           

0

s s s

r s r s r s
S

s s

r s r r s s s s

 (30) 

   
VI,SPM ,

PR
f f l

S S  lets RaP1R2RbRc to be a feasible limb structure of SPMs. 

Using this manner, six four-DOF and thirty-seven five-DOF derivative limb structures can be 

synthesized. In these five-DOF derivative limbs, when three adjacent joints generated three-DOF planar 

motions (two translations in a plane and one rotation perpendicular to that plane), the R joints in these 

three joints can be adjusted to not pass point O, twenty-one additional derivative limb structures can be 

obtained in this way. Furthermore, when two R joints and their adjacent one R joint intersects at a 

common point A, this R joint can be adjusted to not pass point O, resulting in three additional derivative 

limb structures. Consequently, totally one three-DOF, eight four-DOF and sixty-four five-DOF feasible 

limb structures of SPMs are synthesized as shown in Table 1. 

According to Eq. (14), the assembly conditions for SPMs can be concluded through deriving the 

requirements that the one or two-DOF translations generated by the limbs in a SPM have no intersection: 

(1) The spherical centers of all limbs should be placed to be coincident. 

(2) When all limbs can generate translations with fixed directions, at least one of the following 

conditions should be satisfied. 

(a) P joints in limbs generating one-DOF translations with fixed directions cannot be parallel to each 

other. 

(b) Each translational plane that the two-DOF translations generated by a limb are parallel to cannot have 

common vertical planes. 
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Table 1. Feasible limb structures of SPMs. 

Standard limb structures Derivative limb structures 

RaRbRc  

P1RaRbRc RaP1RbRc, RaRbP1Rc, RaRbRcP1 

R1RaRbRc RaR1RbRc, RaRbR1Rc, RaRbRcR1 

P1P2RaRbRc 

RaP1P2RbRc, RaRbP1P2Rc, RaRbRcP1P2, P1RaP2RbRc, P1RaRbP2Rc, 

P1RaRbRcP2, RaP1RbP2Rc, RaP1RbRcP2, RaRbP1RcP2, P1P2RaRbRc, 

P1RaP2RbRc, RaP1P2RbRc, RaP1P2RbRc, RaP1RbP2Rc, RaRbP1P2Rc, 

RaRbP1P2Rc, RaRbP1RcP2, RaRbRcP1P2 

R1R2RaRbRc 

RaR1R2RbRc, RaRbR1R2Rc, RaRbRcR1R2, R1RaR2RbRc, R1RaRbR2Rc, 

R1RaRbRcR2, RaR1RbR2Rc, RaR1RbRcR2, RaRbR1RcR2, RaRaRaRbRc, 

RaRbRbRbRc, RaRbRcRcRc, R1R2RaRbRc, RaR1R2RbRc, RaRbR1R2Rc 

P1R2RaRbRc 

RaP1R2RbRc, RaRbP1R2Rc, RaRbRcP1R2, P1RaR2RbRc, P1RaRbR2Rc, 

P1RaRbRcR2, RaP1RbR2Rc, RaP1RbRcR2, RaRbP1RcR2, R2P1RaRbRc, 

RaR2P1RbRc, RaRbR2P1Rc, RaRbRcR2P1, R2RaP1RbRc, R2RaRbP1Rc, 

R2RaRbRcP1, RaR2RbP1Rc, RaR2RbRcP1, RaRbR2RcP1, P1RaRaRbRc, 

RaP1RaRbRc, RaRaP1RbRc, RaP1RbRbRc, RaRbP1RbRc, RaRbRbP1Rc, 

RaRbP1RcRc, RaRbRcP1Rc, RaRbRcRcP1 

 

     

     
Fig. 6. Typical SPMs with symmetrical structures: (a) 3-P1P2RaRbRc; (b) 3-P1RaRaRbRc; (c) 3-RaRaRaRbRc; (d) 3-

R1RaRaRbRc. 

O

(b) 

O

(a) 

O

(d) 

O

(c) 
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(c) There exists one P joint in a limb which is not parallel to the translational plane of another limb. 

(3) When one or more limbs only generate translations along circles, at least one of the following 

conditions should be satisfied. 

(a) At least one limb can generate translation with fixed direction. 

(b) R joints with coincident axes which do not pass through the spherical center cannot exist in all limbs. 

(c) If all limbs generate two translations along circles, there should be more than three limbs satisfying 

condition (3-b). 

Based upon these assembly conditions, any SPM can be synthesized using the feasible limbs. Three 

typical SPMs with symmetrical structures are given in Fig. 6. The Ra joints can be selected as actuation 

joints for all these symmetrical SPMs. 

4.2 Kinematic analysis of SPMs 

According to the derivations in Section 2, parametric model of a SPM can be directly obtained by 

differentiating its topological model. Topological model of 3-P1P2RaRbRc in Fig. 7 can be formulated as 

 

 
Fig. 7. 3-P1P2RaRbRc SPM. 

 

  , , ,, , ,

, ,2 ,1

, , , ,2 ,1

2tan 2tan 2tan
2 2 2

i c i b i ai c i b i a

f i i i

O i c O i b O i a i i

t t
             

           
             

0 0s s s
S

r s r s r s s s
 (31) 

       ,SPM ,1 ,2 ,3 2tan 2 tan 2 tan
2 2 2

c b ac b a
f f f f

O c O b O a

         
        

         

s s s
S S S S

r s r s r s
 (32) 

According to Eq. (12) and Eq. (18), the parametric model of this SPM can be directly formulated as 

  ,

,

1,2,3
0,SPM ,SPM

, , ,
0

1,2

span ,  ,  i j

i k

c b ai
t f c b a

j a b c
t O c O b O a

k

   







           
         

           

s s s
S S

r s r s r s
 (33) 

Thus, the Jacobian matrix of this SPM can be obtained which is ready for velocity, acceleration, 

stiffness and dynamic analysis. 

,SPM

a

a b c

t b

O a O b O c

c







 
   

          

s s s
S

r s r s r s
 (34) 

,1is

,2is

,i as
,i bs

,i cs
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5 CONCLUSIONS 
A screw theory based method to unify type synthesis in finite motion level and kinematic analysis in 

instantaneous level of PMs is proposed in this paper. The following conclusions are drawn. 

(1) The topological and parametric models of a PM, its limbs and joints are systematically formulated 

employing finite and instantaneous screws. The relationship between these two models is clearly 

revealed using the derivative mapping between the two kinds of screws. 

(2) A general and consistent process based upon algebraic and analytical screw operations to do type 

synthesis and kinematic analysis of PMs is given using these models. 

(3) The validity of the proposed method is verified through taking SPMs as an example. 
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