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ABSTRACT
This paper deals with the wrench workspace (WW ) determination of parallel manipulators. The WW is

the set of end-effector poses (positions and orientations) for which the active joints are able to balance a set
of external wrenches acting at the end-effector. The determination of the WW is important when selecting
an appropriate robotic design since the size and shape of the WW are dependent on the robot’s geometry
(design) and selected actuators. Algorithms for the determination of the reachable workspace and the WW
are presented. The algorithms are applicable to robotic architectures utilizing actuators with positive and
negative limits on the force/torque they can generate, as well as cable-driven parallel manipulator architec-
tures which require nonnegative actuator limits to maintain positive cable tensions. The approaches used in
this paper provide guaranteed results and are based on methods utilizing interval analysis techniques for the
representation of end-effector poses and design parameters.

Keywords: interval analysis; wrench capability; wrench workspace.

1. INTRODUCTION

Parallel manipulators (PMs) are a classification of robotic mechanism consisting of a moving platform
which is connected to a fixed base through multiple serial kinematic chains (limbs) forming a closed-loop
architecture, as illustrated in Figure 1. The closed-loop architecture allows n-degrees-of-freedom (DOF)
motions using m active joints, where m must be equal to or greater than n. All remaining joints are passive.
PMs tend to have a) high load carrying capacity as the total load can be shared by the limbs acting in parallel,
b) low inertia of most moving parts due to the heavy actuators typically being located near or at the fixed
base, and c) high structural stiffness. However, PMs tend to have smaller and less dexterous workspaces
due to link interferences, internal singular configurations, and physical constraints. Cable-driven parallel
manipulators (CDPMs) are a special class of PM where the moving platform is connected in parallel to
fixed actuated spools by cables (see Figure 1b). If each cable is modelled as a rigid-body, the CDPM in
Figure 1b is kinematically equivalent to the rigid-link 3-RPR PM. Actuation of the cable lengths allows
for control of the moving platform and generation of end-effector wrenches. A limiting factor of a CDPM
is that the cables are non-rigid members and therefore require nonnegative cable tensions to constrain the
robot’s moving platform. CDPMs have several benefits over rigid-link PM architectures, such as a very large
reachable workspace (since large cable lengths can be used), low visual intrusion, low limb mass (since each
limb consists of only a cable), rapid deployment and easy reconfigurability.

1.1. Task Completion
When selecting a robot for a specific task, it is important to select an architecture with an appropriate

design which is capable of: generating desired end-effector wrenches (i.e., force/moment couples, herein
referred to as simply wrenches), and traversing desired trajectories. Several papers have considered the
workspace analysis for a task, given a required set of wrenches described geometrically as a point (a single
wrench) [2, 5, 7], a solid hyper-ellipse [2, 3, 8], a solid hyper-rectangle [10], or a solid convex polytope [2, 7].
Point representation is important when obtaining a CDPM’s static workspace (the set of poses of the moving
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Fig. 1. Parallel manipulator architectures.

platform for which the cables can balance the weight of both the platform and the payload with tension forces
only), as the single wrench corresponds to the combined platform and payload weight; the importance of
the hyper-ellipse representation is that the force and moment contributions of a wrench can be modelled
independently as being isotropic; e.g., a force of magnitude 1 N in any direction and a moment of magnitude
0.5 Nm in any direction; the hyper-rectangle representation independently defines the lower and upper
bounds of the desired forces and moments and is suitable for interval analysis techniques; and a polytopic
representation allows for complex descriptions of task wrench requirements described by the intersection of
a set of half-spaces.

The usable workspace for the robot when considering a desired task is termed the wrench workspace. A
similar term, wrench-feasible workspace, is typically given to the workspace of a CDPM which considers
nonnegative cable tensions. The concept of a wrench workspace has been studied in [3, 6–9, 18, 21].
An interval-based method [10, 12] and a convex-hull method [2, 3, 6, 7] are two current techniques for
numerically obtaining the wrench workspace. A comparison of the two techniques applied to the 3-RPR
CDPM is provided in [17]. The term wrench workspace (WW ) will be used throughout this paper to refer to
both CDPMs with nonnegative cable tensions and rigid-link PM architectures for the completion of desired
tasks. Determination of the WW is commonly performed by considering a grid of end-effector poses, where
each pose is tested for being wrench-capable (i.e., the robot is able to generate the desired wrenches at
the given pose). The grid is used to discretize the search space and each discretized pose is evaluated
for being wrench-capable. Discretization provides a straightforward algorithm for determining a set of
wrench-capable poses which collectively form the WW . However, the solution set of poses only provides
an approximation of the true WW . This is because out of the infinitely many poses of the discretized search
space, only a finite quantity – those on the discretization grid – are tested; therefore, all of the poses of the
grid may be wrench-capable but some poses which are not wrench-capable may be missed, especially since
the WW typically has a non-convex geometry, may contain holes, and may also be separable. Gouttefarde
et al. [10] state “the result provided by a discretization can never be guaranteed, i.e., one can never know if
this result can be trusted.”.

1.2. Interval Analysis Techniques
This paper expands on the work by Gouttefarde et al. [10] on the guaranteed determination of a CDPMs

wrench-feasible workspace using interval analysis techniques. Interval analysis techniques allow computa-
tions using an interval representation for variables. These techniques provide an alternative to the typical
discretization methods since they allow an infinite set of poses to be represented as a single interval. Clas-
sification tests can then be used on the pose intervals and can provide high resolution and guaranteed WW
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determinations. The solution is guaranteed since each of the infinitely many poses are explored. Interval
analysis also has an added benefit of accounting for numerical rounding errors by properly representing a
floating point value by an interval which tightly contains the desired value. The verification of a pose inter-
val being wrench-capable is based on an inside test which ensures feasibility for a system of interval linear
equations using two theorems proposed by Rohn [19] for strong feasibility (for CDPMs with nonnegative
cable tensions) and strong solvability. A complementary outside test is used to determine if a pose interval
falls completely outside of the WW , i.e., no pose inside the pose interval can generate the desired wrenches.
The outside test was proposed in [10] and utilizes interval filtering or consistency techniques and provides
guaranteed results that the interval under inspection is completely outside of the WW .

The contribution of this paper is to extend the interval analysis algorithm originally proposed for CDPMs
with nonnegative cable tensions by Gouttefarde et al. [10] to general PM architectures utilizing actuators
with both positive and negative torque/force limits (capabilities). Section 2 introduces interval arithmetic
and describes general solving procedures for the interval evaluation of a function, filtering techniques which
can be applied to the function to enforce consistency in the variables, and a branch-and-bound method for
improving the interval solution. The reachable workspace evaluation is described in Section 3 and is based
on the algorithm proposed by Oetomo et al. [16] which describes an interval analysis method to certify
the reachable workspace of a flexure-based precision mechanism using the forward and inverse kinemat-
ics combined with interval constraint satisfaction techniques. This algorithm is easily adaptable to many
kinematic architectures, with various kinematic chains, expressed as constraints in terms of mathematical
equalities/inequalities and is able to manage parameter uncertainties (e.g., the length of the proximal and
distal links are specified as li±δ to model flexure-joint deflections). The implementation of this algorithm
for general PM architectures is presented which consists of an inside test which is able to efficiently de-
termine the set of pose intervals which are completely inside the reachable workspace and an outside test
to determine the set of pose intervals which are completely outside the reachable workspace. The WW
is described in Section 4 and an algorithm for determining the set of pose intervals which are inside and
outside the WW is provided. The examples in this paper are coded in C++ and use the interval arithmetic
and HC4 constraint propagation loop of the Ibex C++ library, and the simplex method of the Computational
Infrastructure for Operations Research (COIN) library.

2. INTERVAL-BASED KINEMATICS

2.1. Interval Arithmetic
Interval analysis is a mathematical framework which allows for a computation using interval quantities,

such that an interval variable [x] denotes the natural extension of the closed interval [x] = [x,x] = {x | x ∈
R, x≤ x≤ x}. A fundamental feature of interval analysis is the interval evaluation of a function which yields
a closed interval bounding the set of solutions. The evaluation of the function f (x) over the interval [x] yields
an interval [ f ] which encloses the image of [x] under f ([x]). The function [ f ] is called an inclusion function
for f ([x]), such that f ([x]) = { f (x) | x ∈ [x]} ⊆ [ f ]. The converse inclusion does not hold in general, and
[ f ] overestimates f ([x]), thereby introducing pessimism in the evaluation [10]. The overestimation caused
by the interval evaluation f ([x]) is known as the wrapping effect [11, 15]. This states that there exists
solutions in [ f ] which are not solutions to the original problem. Thus, [ f ] does not accurately represent
the problem solution and instead only provides boundaries of the solution. The dependency problem [11]
is another source of overestimation which is caused by an interval variable appearing multiple times in
a calculation. Each occurrence is taken independently which can lead to an unwanted expansion of the
resulting interval. Cancellation or reduction of the number of occurrences of a variable before interval
evaluation can reduce interval widths [14] (e.g., if [x] = [−2,2], then the interval solution for [x]2 = [0,4],
whereas [x]∗ [x] = [−4,4]).
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2.2. Interval Classification
The goal of this work is to evaluate a PM in terms of its wrench capabilities, i.e., the entire set of wrenches

that the robot can generate given certain actuator capabilities. [p] is defined as the interval pose vector
containing the task space variables (e.g., x, y, and ψ for the 3-RRR PM). A Cartesian product of intervals is
typically referred to as a box. Interval analysis allows us to model other variables as interval quantities, such
as, actuator placement, and link lengths. A common strategy in interval analysis is to classify a box into
one of three categories: inside, outside, or boundary. As an example, consider an inequality representing a
constraint (C([p], [h]) ≤ 0) to be satisfied over the search space S ⊂ Rn, where [h] is a box containing the
design parameters of the manipulator, such as actuator placements, link lengths, and actuator capabilities.
The problem can be formulated such that

inside boxes = {[p] ∈ S | ∀p ∈ [p], ∀h ∈ [h], C([p], [h])≤ 0}
outside boxes = {[p] ∈ S | ∀p ∈ [p], ∀h ∈ [h], C([p], [h])> 0}

boundary boxes = {[p] ∈ S | ∀p ∈ [p], ∀h ∈ [h], inf(C([p], [h]))≤ 0, sup(C([p], [h]))> 0}
(1)

Due to the overestimation of the interval evaluation of C([p], [h]) caused by the wrapping effect and
dependency problem, it is necessary to apply interval filtering techniques (contractors) to the constraints such
that consistency in the interval variables is enforced in the evaluation of the constraint. Filtering techniques
use additional information contained in the mathematical equations or through the use of additional physical
constraints to sharpen the resulting solution interval. Oetomo et al. [16] propose the use of the forward
kinematic equations as physical constraints in addition to the inverse kinematic equations when obtaining
the reachable workspace. The Ibex C++ library provides a classical constraint programming algorithm
known as the forward-backward contractor (or HC4Revise [20]), which is used in this work. Other filtering
techniques, such as the 2-B-consistency and 3-B-consistency [13] local consistency techniques are effective
methods with reasonable computation times.

It can often be difficult to conclude whether a given interval satisfies the requirements for being an inside
or outside box for interval variables with a large width. Filtering techniques contract the width of a given
box in an attempt to obtain a sharp solution; however, it can only return the sharpest box which bounds
the solution. The actual solution may only occupy a portion of this box. The branch-and-bound strategy
performs an automated bisection routine which is applied to all boundary boxes following the classification
routine. Each boundary box is split according to a bisection strategy. A common strategy is the largest
first strategy which bisects the box equally along the dimension (interval variable) with the largest width.
With such a strategy, each interval variable is bisected in turn and the size of the box is continually reduced
until an inside or outside box is found. This procedure is applied to all boundary boxes until the maximum
width of any remaining boundary boxes is smaller than a desired threshold. Unless otherwise specified, the
threshold, ε , used in the examples throughout this paper is ε = 0.01 m.

3. REACHABLE WORKSPACE EVALUATION – 3-RRR EXAMPLE

The reachable workspace (RW ) for a PM is defined as the set of end-effector poses p that a robotic
architecture is able to reach for a given set of design parameters h. The RW for a PM can be found by
solving the inverse kinematics for the robot and ensuring that the pose has a real solution. CDPMs have
the added complexity that the cables must maintain a positive tension, thus requiring an analysis which
combines kinematics with statics for determining the CDPM’s RW . A CDPM’s RW can be determined
using the WW algorithm in Section 4 which accounts for the nonnegative cable tensions.

The 3-RRR PM architecture (see Figure 1a and Figure 2) consists of three limbs, each consisting of three
revolute joints and two links, attaching the moving platform to the fixed base. The inverse kinematics can be
solved in terms of a pose p to give the joint angles, αi, βi, γi, for each limb i. Each limb is given an individual
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reference frame {Oi} located at the limb’s fixed base position with the same orientation as the base frame
{O}. The origin of each reference frame will be defined as Point Oi. Point P = (xe,ye)

T represents the
location of the end-effector in terms of the base frame, where pe = (xe,ye)

T is the vector pointing from
the origin of {O} (O) to P. The robot’s complete pose will be defined as p = (xe,ye,ψ)T . Rz(ψ) decribes
the transformation from the end-effector frame {E} to frame {O}. The position of the moving platform
attachment point, 0ibi, expressed in terms of frame {0i} is given by

Oibi = bi−Oi = pe +Rz(ψ) ·E di−Oi (2)
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Fig. 2. 3-RRR kinematic diagram.

3.1. Inverse Kinematics Problem
A Constraint Satisfaction Problem (CSP) can be used to define the inverse kinematics for a PM in the

form of a set of equality and inequality constraints and a set of interval variables. Generally, the inverse
kinematics solution is obtained by first calculating the angle βi for limb i, which has two possible solutions
– elbow-left and elbow-right configurations. By selecting the elbow-right configuration, cos(βi) can be
evaluated (along with sin(βi) = sin(cos−1(cos(βi)))). The joint angle αi can then be calculated using both
the sine and cosine. The length of the proximal and distal links are ri and li, respectively. The closed-form
solution of the inverse kinematics is given as follows:

cos(βi) = (Oib2
ix +

Oi b2
iy− (r2

i + l2
i ))/(2liri)

cos(αi) = (Oibix(ri + li cos(βi))+
Oi biyli sin(βi))/(

Oib2
ix +

Oi b2
iy)

sin(αi) = (−Oibixli sin(βi)+
Oi biy(ri + li cos(βi))/(

Oib2
ix +

Oi b2
iy)

(3)

Since [p] = ([xe], [ye], [ψ])T is an interval, the solutions to the inverse kinematic equations in (5) are also
intervals which must satisfy certain trigonometric constraints defined by:

C1([p], [h]) = cos(βi) ∈ [cos(βi),cos(βi)]⊆ [−1,1] → βi ∈ [0,π] (elbow-right)

C2([p], [h]) = cos(αi) ∈ [cos(αi),cos(αi)]⊆ [−1,1]

C3([p], [h]) = sin(αi) ∈ [sin(αi),sin(αi)]⊆ [−1,1]

(4)

The box [p] is classified as an inside box when all of the constraints in Eq. (4) are satisfied, and is classified
as an outside box if any of the inverse kinematic solutions falls in the complement of Eq. (4). Additional
constraints can be imposed on the robot by adjusting the interval bounds of the constraints in Eq. (4). For
example, poses where the proximal and distal links overlap can be eliminated by setting cos(βi) = ρ , where
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Algorithm 1 Compute the inverse kinematics with interval analysis
Type, [k] (optional) = COMPUTE INVERSEKINEMATICS([p], [h])
1: for all i in Ci([p], [h]) do
2: try
3: [ki] =Ci([p], [h])
4: catch
5: return Type = 0
6: if CONSTRAINT SATISFIED(i, [ki])==−1 then
7: return Type =−1 . Classify as outside box
8: [k] = FILTERING([k])
9: if all CONSTRAINT SATISFIED(i, [ki])== 1 then

10: return (Type = 1, [k]) . Classify as inside box
11: else if any CONSTRAINT SATISFIED(i, [ki])==−1 then
12: return Type =−1 . Classify as outside box
13: else
14: return Type = 0 . Classify as boundary box

ρ specifies the maximum allowable range of βi. The RW of the mechanism is described by the union of
the set of inside boxes. As explained by Gouttefarde et al. [10], a pose p which lies on the boundary of
the reachable workspace belongs neither to the set of inside or outside boxes, and, thus necessarily belongs
to the set of boundary boxes. Therefore, the RW boundary is necessarily contained in the set of boundary
boxes.

An algorithm for computing the inverse kinematics problem (IKP) is proposed in Algorithm 1. The
inputs for the algorithm are the current pose [p] and the design parameters [h]. The algorithm returns the
box classification, and the inverse kinematics solution if the box is classified as inside. In certain cases, the
evaluation of a constraint may fail due to interval related issues (e.g., division by zero, trigonometric bounds
exceeded); therefore, a try–catch statement classifies a failed evaluation as a boundary box. The function
CONSTRAINT SATISFIED(i, [ki]) determines if constraint i is satisfied over the interval [ki]. This function
returns a 1 if the constraints are all completely satisfied, −1 if any constraint is completely dissatisfied, and
0 otherwise. The function FILTERING([k]) attempts to filter the inverse kinematics solutions [k] using a
combination of inverse and direct kinematic equations and interval filtering techniques (e.g., HC4Revise).
Oetomo et al. [16] thoroughly explain interval filtering using the inverse and direct kinematics.

3.2. Reachable Workspace Algorithm
The RW determination algorithm is summarized in Algorithm 2. Algorithm 2 is applicable to PM achitec-

tures which have a closed form for the inverse kinematics; however, it is not directly applicable to CDPMs
due to their requirement for nonnegative cable tensions. Several lists are used to store classified pose in-
tervals including Linside, Loutside, Lboundary, and also the list L to store unclassified intervals. The function
EXTRACT(L) extracts an interval from the top of the list. If an interval is classified as a boundary box and
the width of the box exceeds the threshold ε , the function BISECT([p]) bisects the boundary box into two
smaller boxes as previously decribed in Section 2.2. The symbol← denotes insertion of an element to the
bottom of the list.

Figure 3a provides a plot of the RW for the 3-RRR PM with constant orientation, i.e., [ψ] = [0,0],
for link lengths li = 0.3 m, ri = 0.2 m. The design parameters used are: Ed1 = (0.2,0.0)T m, Ed2 =
(−0.1,0.1732)T m, Ed3 = (−0.1,−0.1732)T m, O1 = (0.4,0.0)T m, O2 = (−0.2,0.3464)T m, and O3 =
(−0.2,−0.3464)T m. The RW boundaries are completely contained within the set of boundary boxes and
interior poses located on the RW boundaries are appropriately detected.
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Algorithm 2 Reachable workspace evaluation with interval analysis
Linside, Loutside, Lboundary = COMPUTE REACHABLEWORKSPACE(S, [h], ε)
1: Initialize empty lists L, Linside, Loutside, and Lboundary
2: L← S . Initialize list L with search box S

3: while L 6= { /0} do
4: [p]← EXTRACT(L) . Select box from top of list L
5: (Type, [k]) = COMPUTE INVERSEKINEMATICS([p], [h])
6: if Type == 1 then
7: Linside← [p], [k] . [p]⊆ RW , insert [p] and [k] to bottom of inside list
8: else if Type ==−1 then
9: Loutside← [p] . [p]* RW , insert [p] to bottom of outside list

10: else
11: if Width([p])> ε then
12: L← BISECT([p])
13: else . [p] is too small to be bisected
14: Lboundary← [p] . insert [p] to bottom of boundary list

4. WRENCH WORKSPACE EVALUATION

4.1. Task Description
A task requires a robot to be able to generate certain wrench sets and be able to continuously apply/sustain

them throughout a trajectory. A WW describes the portion of the robot’s RW where a particular task can be
performed. The term wrench capability (WC) is given to the set of wrenches that a robot can generate at
its end-effector at a given pose. Due to its polytopic geometry [1], a WC can be described by a closed set
represented by an intersection of half-spaces, where the WC at a pose p is denoted by WC(p). Similarly,
the task wrench set is typically represented by a closed set, which is termed the minimum allowable wrench
capability (MAWC) [17], which is used to define the minimum wrench set required for a specific task. That
is, the WC at each pose inside the WW must satisfy the MAWC in order to be able to generate the wrenches
required by the task. In terms of interval analysis, the WW is defined as:

WW = {[p] | [p] ∈ RW, ∀ p ∈ [p], MAWC ⊆WC(p)} (5)

4.2. Interval Evaluation of the Jacobian Matrix
Interval analysis provides a useful alternative to conventional discretization techniques due to its ability

to represent an infinite set of poses in terms of an interval vector [p]. Since the Jacobian matrix, J = Jq
−1Jx

(Jq is the inverse Jacobian and Jx is the direct Jacobian), is pose-dependent, each element Ji j of J is interval
evaluated over the pose [p], thereby yielding an interval [Ji j]. The m×n interval matrix [J] whose elements
are the intervals [Ji j] has the fundamental property ∀ p ∈ [p], J(p) ∈ [J]. In other words, for every pose
p∈ [p], the Jacobian matrix obtained for p belongs to [J]. Consequently, the interval matrix [J] overestimates
the set {J(p) | p ∈ [p]}. There exists some matrices J0 ∈ [J] where ∀ p ∈ [p], J0 6= J(p); this is due to the
wrapping effect [10]. Note that the Jacobian matrix is also a function of the design parameters [h], i.e.,
J([p], [h]), such that ∀ p ∈ [p], ∀ h ∈ [h], J(p,h) ∈ [J].

Each active joint is capable of supplying a force/torque τi. If τττ is a vector containing the actuator
forces/torques of all active joints, then [τττ] represents the capabilities of all m actuators. Assuming that the
MAWC is represented in the form of an interval, the WW can be represented by the forward-force solution
in the form of a system of interval linear equations, such that at each pose:

[J]T τττ = [MAWC], τττ ∈ [τττ,τττ] (6)

which amounts to testing infinitely many linear systems such that

∀ J ∈ [J], ∀ f ∈ [MAWC], ∃ τττ ∈ [τττ,τττ] | JT
τττ = f (7)
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where f denotes a wrench. Eq. (7) states that the entire set of required wrenches (i.e., [MAWC]) can be
generated for all J ∈ [J] given the actuator capabilities [τττ]. In order for [J] to be finite, it is important that
[Jq] be invertible, such that ∀ Jq ∈ [Jq], ∃ Jq

−1.

4.3. System of Interval Linear Equations with Bounded Solutions
According to Rohn [19], a system of linear equations (Ax = b) is called a) solvable if it has a solution and

b) feasible if it has a nonnegative solution, i.e., feasibility implies nonnegative solvability. The system of
interval linear equations [A]x = [b] is understood to represent the family of all systems of linear equations
Ax = b, A ∈ [A], b ∈ [b]. The interval system is said to be strongly solvable (strongly feasible) if each
subsystem is solvable (feasible). Eq. (6) is a system of interval linear equations with a bounded solution,
τττ ∈ [τττ], such that the interval system is strongly solvable (strongly feasible) and also accounts for the actuator
capabilities. It is important to use the proper theorem to ensure that each of the infinitely many linear systems
are verified. The strong feasibility test can be applied directly to CDPMs since they do not have nonnegative
cable tensions, whereas PMs with revolute or prismatic actuators, for example, can generate both positive
and negative torques/forces and thus require analysis using the strong solvability theorem.

4.3.1. Vertex Matrices and Vertex Vectors
The strong solvability and strong feasibility theorem by Rohn [19] require a vertex representation for

the system of interval linear equations, where Yn is the set of 2n unique n-dimensional vectors y whose
components yi are either 1 or −1.

For an n×m interval matrix [A], whose components are intervals [Ai j] = [Ai j,Ai j], the corresponding
vertex matrix Ay for each y ∈ Yn has components

Ayi j = Ai j +(Ai j−Ai j)(1− yi)/2 (8)

For an n-dimensional interval vector [b], whose components are intervals [bi] = [bi,bi], the corresponding
vertex vector by for each y ∈ Yn has components

byi = bi +(bi−bi)(1+ yi)/2 (9)

4.3.2. Strong Feasibility
Theorem 1. [19] A system Ax = b is strongly feasible if and only if for each y ∈ Yn the system

Ayx = by (10)

has a nonnegative solution xy. For each A ∈ [A], b ∈ [b], the system Ax = b has a solution in the set
Conv{xy | y ∈ Yn}.

Gouttefarde et al. [10] propose a technique utilizing linear programming (LP) to determine the strong
feasibility of Eq. (6) for τττ ≥ 0. The system of interval linear equations is strongly feasible if and only if
the 2n systems of linear equations JT

y τττ = fy, y ∈ Yn are all feasible. The feasibility of a system of linear
equations can be tested by means of the first phase of the simplex method applied to the LP problem

min 0T τττ

s.t. JT
y τττ = fy

τττ ∈ [τττ]

(11)

where the objective function is trivial since only feasibility of the system of linear equations is desired and
the solution set satisfies

Conv{τττy | y ∈ Yn} ⊆ [τττ] (12)
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Algorithm 3 Wrench workspace inside box determination
Type = COMPUTE WRENCHWORKSPACE INSIDE([J], [MAWC], [τττ])
1: if τττ < 0 then
2: FEASIBLE = &STRONG SOLVABILITY . Use the STRONG SOLVABILITY test
3: else
4: FEASIBLE = &STRONG FEASIBILITY . Use the STRONG FEASIBILITY test
5: for all y ∈ Yn do
6: if FEASIBLE(y, [J], [MAWC], [τττ]) ==−1 then
7: return Type = 0 . Cannot be classified
8: return Type = 1 . Classify as inside box

Therefore, if each system JT
y τττ = fy, y ∈Yn is feasible via Eq. (11), than the robot is guaranteed to be able to

generate the task wrenches, [MAWC], with the actuator capabilities, [τττ], for τττ ≥ 0.

4.3.3. Strong solvability
Theorem 2. [19] A system Ax = b is strongly solvable if and only if for each y ∈ Yn the system

Ayx1−A−yx2 = by
x1 ≥ 0, x2 ≥ 0

(13)

has a solution x1
y, x2

y. For each A ∈ [A], b ∈ [b], the system Ax = b has a solution in the set Conv{x1
y−

x2
y | y ∈ Yn}.

A similar LP test can be used to determine the strong solvability of Eq. (6) by testing the feasibility of
each system of linear equations JT

y x1−JT
−yx2 = fy, y ∈ Yn via the LP problem

min 0T (x1−x2)
s.t. JT

y x1−JT
−yx2 = fy

x1 ≥ 0, x2 ≥ 0
x1−x2 ∈ [τττ]

(14)

where [τττ] is not strictly positive and the solution set satisfies

Conv{x1
y−x2

y | y ∈ Yn} ⊆ [τττ] (15)

Therefore, if each system JT
y x1−JT

−yx2 = fy, y ∈ Yn is feasible via Eq. (14), than the robot is guaranteed to
be able to generate the task wrenches, [MAWC], with the actuator capabilities, [τττ], for τττ < 0.

4.4. Wrench Workspace – Inside Box Classification
By means of the strong solvability and strong feasibility theorems, a pose interval [p] can be classified as

an inside box via Algorithm 3. The functions STRONG SOLVABILITY and STRONG FEASIBILITY return 1
if true, and −1 if false. COMPUTE WRENCHWORKSPACE INSIDE([J], [MAWC], [τττ]) returns 1 if the box is
inside and 0 if the box is not inside. A return value of 0 does not necessary imply an outside box.

4.5. Wrench Workspace – Outside Box Classification
The conditions for testing if a pose interval [p] is fully outside of the wrench workspace is proposed by

Gouttefarde et al. [10]
∃ fy ∈ [MAWC] | ∀ J ∈ [J], ∀ τττ ∈ [τττ], JT

τττ 6= fy (16)

which implies that some wrench fy cannot be generated with admissible actuator capabilities [τττ] for all
p ∈ [p], and therefore [p] must be an outside box.
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The condition (16) can be tested by applying interval filtering techniques to the system of interval linear
equations [J]T τττ = fy, τττ ∈ [τττ] for each vertex vector fy of [MAWC] to determine a new box [τττ]′, such that
[τττ]′ ⊆ [τττ]. If the filtering technique returns [τττ]′= { /0} for any of the systems of interval linear equations with
domain [τττ], the system is inconsistent and Eq. (16) is true. COMPUTE WRENCHWORKSPACE OUTSIDE([J],
[MAWC], [τττ]) performs the wrench workspace outside box classification test and returns 1 if classified as an
outside box and 0 if the box is not outside.

4.6. Classification Algorithm
The function COMPUTE JACOBIAN([k], [h]) computes the interval Jacobian matrix for the PM given the

interval solution to the IKP, [k], and the design variables, [h], and returns Err. Err has a value of 1 if the
interval Jacobian matrix cannot be computed (e.g., the inverse Jacobian cannot be inverted) and 0 other-
wise. Utilizing the RW computation (Algorithm 2), the WW inside box classification test (Algorithm 3) and
the WW outside box classification test, the WW can be computed for many PM architectures. The WW
computation algorithm is described in Algorithm 4.

The RW is used to initialize the search space for the WW determination. Due to WW ⊆ RW , the set of
inside boxes from the RW determination are added to the unclassified list L in the WW determination. All
other boxes are reclassified as being outside boxes. Each box in list L is tested for being wrench-capable.
The interval Jacobian matrix, [J], is computed for each box, and each box is then tested for being inside
or outside, given the desired wrench set, [MAWC], and actuator capabilities, [τττ]. The branch-and-bound
strategy is applied to refine the list of boundary boxes.

It is important to obtain a tight representation of [J] which minimizes the impact of the wrapping effect
and dependency problem (refer to Section 2.1) in order to avoid large layers of boundary boxes. Several
procedures provided by ALIAS-Maple (based on the ALIAS C++ library) attempt to transform an expression
into an equivalent expression which leads to better interval evaluation. Preconditioning can also be applied
to the system of interval linear equations (Eq.(6)) to transform the system into a new system which contains
all solutions of the original system, but gives tighter bounds to the solutions of the original system [4].
Preconditioning can be performed by multiplying the matrix P = (mid([J]T ))−1 to the original system such
that the new system is

P[J]T τττ = P[MAWC], τττ ∈ [τττ,τττ] (17)

Algorithm 4 is applied to the 3-RRR PM previously described. The WW determination is performed for
a task with wrench requirements [MAWC] = ([ fx], [ fy], [mz])

T = ([10,10] N, [10,10] N, [0,0] Nm)T and a
resolution ε = 0.001 m and is shown in Figure 3b. For clarity, the edges of the boxes have been removed.
The WW result is guaranteed in the sense that each of the infinitely many poses contained within each inside
box are guaranteed to be able to generate the task wrench requirements. The boundary box layer in the WW
is thick due to the overestimation present in [J]. The thin boundary box curves present in the WW are caused
by the inverse Jacobian matrix being non-invertible.

5. CONCLUSIONS

This paper presented an algorithm for the determination of the WW for PMs which can be applied to
architectures utilizing actuators with strictly nonnegative capabilities, i.e., CDPMs with nonnegative cable
tensions, and architectures with general type actuators, e.g., revolute or prismatic, with positive and nega-
tive capabilities. The RW is obtained using interval analysis techniques applied to a constraint satisfaction
problem formed from the direct and inverse kinematics equations. The inside boxes of the RW algorithm are
used to initialize the search space for the WW algorithm. Each box is then classified in the WW algorithm
based on tests applied to a system of interval linear equations. The inside test utilizes linear programming
techniques to determine if the system is appropriately strongly solvable or strongly feasible. The comple-
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Algorithm 4 Wrench workspace evaluation with interval analysis
Linside, Loutside, Lboundary = COMPUTE WRENCHWORKSPACE(S, [h], ε)
1: Initialize empty lists L, Linside, Loutside, and Lboundary
2: Linside, Loutside, Lboundary = COMPUTE REACHABLEWORKSPACE(S, [h], ε)
3: L← Linside . Initialize list L with RW inside boxes Linside
4: Loutside← Lboundary . Move list Lboundary to list Loutside
5: Clear lists Lboundary, Linside
6: while L 6= { /0} do
7: [p], [k]← EXTRACT(L) . Select boxes from top of list L
8: if EXISTS([k])==−1 then . Compute IKP if [k] does not exist
9: [k] = COMPUTE INVERSEKINEMATICS([p], [h])

10: (Err, [J]) = COMPUTE JACOBIAN([k], [h])
11: if Err == 1 then
12: if Width([p])> ε then
13: L← BISECT([p])
14: else . [p] is too small to be bisected
15: Lboundary← [p]
16: else
17: if COMPUTE WRENCHWORKSPACE OUTSIDE([J], [MAWC], [τττ]) then
18: Loutside← [p] . [p]* WW
19: else if COMPUTE WRENCHWORKSPACE INSIDE([J], [MAWC], [τττ]) then
20: Linside← [p] . [p]⊆WW
21: else
22: if Width([p])> ε then
23: L← BISECT([p])
24: else . [p] is too small to be bisected
25: Lboundary← [p]

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x (metres)

y
 (

m
e

tr
e

s
)

(a) Reachable workspace for the 3-RRR PM.
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Fig. 3. Reachable and wrench workspaces for the 3-RRR PM.

mentary outside test applies an interval filtering technique to the system to determine if the bounded solution
is inconsistent. The WW algorithm is applicable to many PM architectures, provided that the inverse kine-
matics problem can be solved in terms of a constraint satisfaction problem, and that the interval Jacobian
matrix can be tightly represented.
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