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ABSTRACT
This paper deals with the dimensional synthesis of the workspace of a planar cable-driven parallel robot.

The dimensional synthesis problem is made equivalent to an optimization problem which is solved by re-
sorting to interval analysis. The workspace under study, namely the wrench-feasible workspace, consists in
set of poses of platform for which a predefined wrench interval can be produced by means of set of cable ten-
sions in an admissible range. The main contribution of this paper consists in obtaining the optimum design
of a cable-driven parallel robot, by having the position of one actuator, as optimization parameter. To do so,
upon a convenient cost function, actuator location will be obtained for which the corresponding workspace
would cover a prescribed circle. Moreover, in order to optimize the workspace, for a given wrench-feasible
workspace of the robot, the maximal wrench-feasible workspace circle will be found using an interval-based
algorithm.

Keywords: Cable-driven parallel robots; Interval analysis; Dimensional synthesis; Maximal wrench-
feasible workspace.

SYNTHÈSE DIMENSIONNELLE DES ROBOTS PARALLÈLES PLANAIRES ENTRAÎNÉS PAR
CÂBLES EN UTILISANT ANALYSE PAR INTERVALLES

RÉSUMÉ
Ce papier étudie la synthèse dimensionnelle de l’espace de travail d’un robot parallèle entraîné par câble.

Le problème de synthèse dimensionnelle est équivalent à un problème d’ optimisation qui est résolu par
le recours à l’analyse par intervalle. L’espace de travail en question est l’espace des torseur-réalisable qui
consiste dans la série de poses de plate-forme pour laquelle un intervalle prédéfini peut être produit au moyen
d’ensemble de tensions de câble dans une plage admissible. La principale contributaion de ce papier consiste
à obtenir la conception optimale d’un robot parallèl entraîné par câble en considérant la position d’un ac-
tionneur comme étant la variable d’optimisation. En effet, pour une fonction d’objective d’optimisation,
l’mplacement de l’actionneur sera obtenu en tell sorte que l’espace de travail correspondant couvriraitun
cercle prescrit. Par ailleurs, afin d’optimiser l’espace de travail, pour un espace de travail torseur-réalisable
compute tenu du robot, le cercle de l’espace de travail torseur-réalisable maximal sera trouvée en utilisant
un algorithme par intervalle.

Mots-clés : Robots Parallèles Entraînés par Câbles, L’analyse par Intervalle, Synthèse Dimensionnelle,
Espace de Travail Maximale du Torseur-Réalisable.
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1. INTRODUCTION

Most of conventional industrial robots have anthropomorphic characteristics and are referred to as serial
robotic manipulator. These type of robots compromise some rigid links connected by prismatic or revolute
joints. Serial robots have some properties of interest, such as, extended workspace, flexibility and manoeu-
vrability. However, they have low accuracy compared to their counterparts, parallel robots [1]. Moreover,
serial robots are not able to access high amounts of velocity or acceleration. In addition, the whole wrench,
i.e., external wrench and platform mass, acted on the End-Effector (EE) transmits to the base via an open
loop chain which imposes high bending forces to the first joint. Although, parallel robots should not be re-
garded as an ultimate remedy for serial shortcomings of serial robots, but an appropriate design of a parallel
robot could alleviate some kinematic drawbacks of serial robots.

Parallel robots can access more carrying capacity [2], better accuracy and high velocity and accelera-
tion [3]. The foregoing properties candidate them for many applications such as Gough-Stewart platform [4]
for flight simulators [5], Delta robots [6] for pick and place applications and Phantom robot as a Haptic in-
terface [7]. In some particular applications, parallel robots with rigid links have some disadvantages such as
complicated kinematic and dynamic equation and limited workspace, due to the stroke of actuators.

The origin of cable-driven parallel robots dates back to 1985 where Sheridan and Lansberger [8] intro-
duced the first type of such robots. Cable-driven parallel robots are parallel mechanisms which use flexible
cables to manipulate the EE. Cables are coiled on motor drums at one end and connected to the moving
platform at the other end. Since long lengths of cables can be coiled on drums, the workspace of these
robots can be extended even to cover a stadium or arena, e.g., SkyCam [9]. Also, due to the lightness of
cables compared with rigid links, the mechanism can exhibit high amount of velocities and accelerations for
a reasonable consumption of energy.

The pose (position and orientation) of the mobile platform in a cable driven parallel robot, is performed
only by changing the elongation of the cables. Since cables can only carry tension forces, it is necessary
to keep cables in a tension condition. Otherwise, the control of the platform will be lost. This is the
main reason for which the workspace analysis of cable-driven parallel robots requires the consideration
of static and kinematic properties. The static limitation of cables in cable-driven parallel robots, i.e. the
impossibility to pull, can be compensated by applying redundancy into the mechanism. Despite of many
mathematical complexities, redundancy can be regarded as an advantage for cable-driven parallel robots,
such as singularity avoidance.

In fact, the workspace of cable-driven parallel robots are investigated under different perspectives and
different classes are introduced, such as controllable, static, dynamic and wrench feasible workspace [1, 10–
14]. Controllable workspace depends on just the geometry parameters of the robot. In addition to the
geometry of the robot, static and dynamic workspaces are related to the weight and acceleration of the EE,
respectively [11–13]. According to the definition of these three types of workspace, the range of acceptable
cable forces is not considered in any of them. But a definition for the workspace of cable robots which takes
into account a range of cable forces and, moreover, the interval of EE wrenches, is introduced in [14–16];
namely the Wrench-Feasible Workspace (WFW). To this aim, an approach based on interval analysis, [17],
will be employed for calculating the guaranteed set of intervals which lie in WFW.

Synthesis of a robot consists of determining the position of actuators, choosing the type of actuators,
arrangement of limb structure and link length [18]. In a cable-driven parallel robot, all actuators are rotary
motors, the length of cables can be regarded infinite and the type of all limbs are the same and is similar
with a prismatic joint. Furthermore, the case study of this paper is a 2T cable-driven robot, T stands for
translational DOF, and the EE is considered to be a point mass, therefore, all cables are attached to a common
point and the attachment position of cables is not important. Hence, in this case the only important criteria
to define a cable-driven parallel robot is the position of the actuators.
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In the design of robotic mechanical systems, the first step is to produce a conceptual design that will meet
the design specifications [19]. The synthesis, is a vital phase that should be considered before manufacturing
a mechanism. According to [19], the synthesis problem consists of finding the linkage that best performs a
given task. One of the branches of kinematic synthesis is dimensional synthesis [19] which is the problem
of finding the geometric parameters of, mechanism relevant to a given task. In this paper, dimensional
synthesis of a planar cable-driven parallel robot is of concern. In fact, the main problem consist in finding
the optimal cable-driven parallel robot for which upon prescribing a circle its corresponding WFW covers
the forgoing circle. To this end, a systematic approach based on interval analysis [17, 20–24] is proposed.
As a case study, a 2-DOF planar parallel cable-driven parallel robot, with three actuators, is considered in
which the approach aims at determining the optimum position of actuators in such a way that the workspace
of the robot includes a given circle in a 2-dimensional Cartesian space. This is common in practice where
based on the intended application and prior to designing the robot the customer prescribes a conventional
geometric shape for the workspace of the robot, such as a circle. Thus, an algorithm based on interval
branch & prune will be proposed to determine the optimum position of an actuator for which the WFW
(with specified wrench interval and tension range) covers the predefined circle.

In addition, in this paper, a complementary approach is introduced to the end of obtaining the Maximal
Workspace Circle (MWC) for a prescribed cable-driven parallel robot. This approach ensures that weather
another circle could be obtained, either equal or bigger than the circle given by the user in the first part.
Therefore, this complementary algorithm will represent the optimum workspace circle of the optimum de-
sign.

The remainder of this paper is organized as follow: By reviewing basic concepts of interval analysis in
Section 2, and afterwards by choosing the wrench feasible workspace, in Section 3, interval-based calcu-
lation of cable-driven parallel robots are represented. Then the algorithm to find the optimum design is
broadly mentioned in Section 4 and results are represented. Finally, an algorithm to the end of obtaining the
MWC is introduced and the corresponding results are discussed in Section 5.

2. INTERVAL ANALYSIS

Discretization is a method that have been widely used for investigating the workspace of robotic mechan-
ical systems. By using this method, the answer would be a set of nodes which lie inside the workspace.
However, the method cannot judge about the poses lie between two inside nodes which is broadly a draw-
back of such a method. A technique that would be utilized to circumvent this shortcoming is interval-based
approach. Interval analysis gives answers as a set of closed intervals for which all of points that are between
lower and upper bound of these intervals are guaranteed to be the answer.

In this paper, interval analysis is used as the mathematical framework. There are many benefits relevant
to use interval analysis [20] such as circumventing round-off errors [21], global optimization [23], proper
workspace presentation, etc. [17, 22–24]. The main attribute of interval analysis which is used in this paper
is its ability to result in a set of guaranteed boxes (interval vector) which lie inside the WFW. The proposed
approach considers a range of position of actuator and then by a branch & prune [17] method, it converges
to the desired results. Furthermore, interval analysis provides an interactive visualization in the progress of
calculation which is a definite asset in 2D adn 3D representations of the workspace.

Interval analysis, is a branch of mathematics which basically works with closed intervals instead of accu-
rate numbers. An interval [x] is a set of real numbers between two bounds and can be represented by:

[x] = [x,x] = {x ∈ R | x≤ x≤ x} , (x≤ x) (1)

where x and x are lower bound and upper bound, respectively. All mathematical operations such as addition
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or multiplication can be implemented on intervals yielding an interval. For instance:

[x]+ [y] = [x,x]+ [y,y] = [x+ y,x+ y], (2)

[x] [y] = [min(S) , max(S)] , S = {xy,xy,xy,xy}. (3)

Moreover, a functions of real numbers such as f (x) can be interval evaluated from a given interval, [x],
which results an interval [ f ] = f ([x]). For example for a monotonic function like f (x) = x3:

[ f ] = f ([x]) = [ f (x), f (x)] = [x3,x3]. (4)

The usage of interval analysis in calculating WFW is merged into the next section and it has been exten-
sively investigated in [11, 14].

3. WRENCH FEASIBLE WORKSPACE

It should be noted that the concepts presented in this section are to the majority of intents and purposes the
same as the one presented in [14] and just a glimpse of the concept is recalled hereafter which is primordial
for the optimization and dimensional synthesis purposes of this paper.

Consider [f] to be an interval vector of the required wrench and [τττ] is the box of allowed cable tensions as
follows:

[τττ] = {τττ | τi ∈ [τimin ,τimax ] , 1≤ i≤ m} (5)

where for each i, 0 ≤ τimin < τimax . It should be noted that, τimax depends on maximum reachable torque of
actuator or admissible cable tension while τimin is defined to ensure that cables will not be slack and usually
is selected as an amount more than zero.

Definition (WFW), [14]. WFW is the set of mobile platform poses that are wrench-feasible, i.e., for which,
for any wrench f in [f], there exists a vector of cable tensions τττ in such a way that: Wτττ = f.

3.1. Interval-based Algorithm of WFW
By using interval analysis tools, a given box of EE poses can be checked to be whether inside, outside

or containing a piece of boundary of the WFW contour [14]. The box of poses [x] yields wrench matrix
W as an interval matrix [W] = W([x]) with the fundamental property of: ∀ x ∈ [x], W(x) ∈ [W]. Then,
the problem of distinguishing which boxes are fully inside the WFW leads to specify the feasibility of a
system of interval linear equations [W]τττ = [f], τττ ∈ [τττ] which as stated in [14] would be examined via a
theorem represented by J. Rohn [25]. Again as stated in [14], for the boxes that are totally outside the WFW
boundary, one can resort to consistency techniques which establish a tool to check unavailability of cables
to produce a particular wrench f ∈ [f] by admissible tensions in [τττ].

3.2. Determination of WFW using branch & prune algorithm
Most of interval analysis algorithms, are based on branch & prune algorithm. To the sake of describing

the forgoing algorithm, first of all consider the problem with a set of unknowns as x = {x1,x2, . . . ,xn}.
The main part of the branch & prune algorithm is the Bisection procedure of boxes. Assume a stage of
algorithm which deals with box Bd = {[xd

1 ,x
d
1 ], . . . , [x

d
n ,xd

n ]}. If this box satisfies the conditions of the main
problem, is saved as answer of the problem. If there is no answer of the problem under study in this box,
then the box is out of range of solution and, thus excluded from the rest of procedure. Otherwise, the
box Bd should be bisected yielding two new boxes BI1

d = {[xd
1 ,x

d
1 ], . . . , [x

d
j ,(x

d
j + xd

j )/2], . . . , [xd
n ,xd

n ]} and

BI2
d = {[xd

1 ,x
d
1 ], . . . , [(x

d
j + xd

j )/2,xd
j ], . . . , [x

d
n ,xd

n ]} where the j-th component of box Bd (interval [xd
j ,x

d
j ]) has

the largest width in the box. This procedure will stop when the processing box width is smaller than a
threshold vector ε . Finally, there would be three sets of boxes:
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Fig. 1. Shematic of a planar 2T cable-driven robot, [26].

Algorithm 1 Optimization algorithm

1: Input: A1x , A2x , A3x , A1y , A2y , [A3y ] , ε , circle(C,R) %circle(C,R) is the circle with center of C and
radius of R

2: Output: sup([B(U)])
3: {B}= {[B(L)], [B(U)]}← Bisect([A3y ])
4: e = diam(B) % Returns the widths of box
5: while e > ε do
6: WFW= obtain_WFW(A1x ,A2x ,A3x ,A1y ,A2y , [B(U)],ε) %Returns WFW boxes regarding [B(U)]
7: if (Inside(circle(C,R),WFW)) then % Checks the inclusion of circle in WFW
8: {B}= Bisect([B(L)])
9: else

10: {B}= Bisect([B(U)])
11: end if
12: e = diam([B(U)]) % Or e = diam([B(L)])
13: end while

1. Set of boxes which are completely inside the answer of the problem.

2. Set of boxes which are completely outside the answer of the problem.

3. Set of boxes which do not completely belong neither to answer nor to outside of the answer.

The existence of the third set is inevitable and can be shrunk (not removed) just by decreasing vector ε .
An example for the WFW of a cable-driven paralell robot, Fig. 2 will be provided in the upcoming section

while introducing the optimization procedure.

4. OPTIMIZATION

Optimization is always performed with respect to a cost function. Beside economical cost functions like
number of actuators which should be minimized, some other criterion like volume expansion would be
considered in the case of cable-driven parallel robots [26, 27]. Reducing the volume expansion, on one
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Fig. 2. Optimum solution of a 2-DOF cable-driven parallel robot for which the wrench feasible workspace covers a
given circle.

hand, allows to embed robot in smaller space, which reduces costs, and on the other hand, less lengths of
cables would be needed to manipulate the platform. The problem of optimization consists in: minimizing
the volume expansion of the robot in such a way that the corresponding WFW embraces a predefined circle
by considering the position of actuators as optimization parameters. For implementing the optimization
algorithm, the position of actuators can be considered as intervals and again branch & prune algorithm will
be applied.

Let assume the 2-DOF planar cable-driven parallel robot as illustrated in Fig. 1. The actuators are placed
in A1 =(0,0)Tm, A2 =(1,0)Tm and A3 =(0.5,1)Tm. Assume a wrench vector of [f] = ([−20,20], [−20,20])TN
and admissible interval of cable tensions is τi ∈ [10,90] N. For such a problem, the WFW is computed using
branch & prune algorithm with ε = (0.001,0.001)Tm. wrench vector of [f] = ([−20,20], [−20,20])TN and
admissible interval of cable tensions is τi ∈ [10,90]N. The problem consists in finding the minimum value
for the y-coordinate of actuator 3, A3y , for which a circle with center of (0.5,0.3)Tm and radius of 0.15m
is covered by the WFW. For solving this problem, an algorithm has been developed as illustrated in Alg. 1
which is based on interval branch & prune method. For this problem, the interval A3y = [0.6,1]m is consid-
ered as initial search domain and threshold vector is ε = (0.002,0.002)T. In each iteration, the search range
of A3y is bisected, namely the upper part ([B(U)]) and the lower part ([B(L)]) where the WFW is computed
with respect to interval [B(U)] as the y-coordinate of the third actuator, A3y . If for [B(U)], the corresponding
WFW contains the given circle, the design purpose is fulfilled, therefore, [B(U)] will be excluded from the
rest of procedure and [B(L)] is considered for further operation. Otherwise, [B(U)] goes for bisection proce-
dure. The next step is the bisection of the remained box and this will be pursued until the desired accuracy
reaches. Finally, the result is A3y = 0.756m, as illustrated in Fig. 2 and the evolution of algorithm iterations
is presented in Fig. 3. In Fig. 3, a third dimension is used in order to represent the evolution of y-coordinate
of A3 toward the optimal one — as indicated in Fig. 3, the optimal value is 0.756m — and the gray cylinder
is representing the prescribed circle in all designs. As it can be observed, the optimum design reached where
the whole circle is inside the WFW.
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Fig. 3. Evolution of the WFW with respect to the optimization iterations.

Algorithm 2 The algorithm used for determining of the boundary boxes

1: Input: Lin , Lneg,ε
2: Output: LB % The list of boundary boxes
3: for all [Bi] ∈Lneg do
4: A = mid([Bi]) % Returns the midpoint of box [Bi]

5: [B1,B2,B3,B4]←
[

A+

(
ε

0

)
,A−

(
ε

0

)
,A+

(
0
ε

)
,A−

(
0
ε

)]
6: for all Bi ∈ [B1,B2,B3,B4] do
7: if Bi ∈Lin then
8: [Bi] ∈LB
9: break for

10: end if
11: end for
12: end for

5. OBTAINING MAXIMAL CIRCLE IN THE WRENCH-FEASIBLE WORKSPACE OF CABLE-
DRIVEN PARALLEL ROBOTS

The WFW of a cable-driven parallel robot is mostly consists of sharp and narrow edges close to the po-
sition of actuators, Fig. 2. These thin regions of WFW are usually undesired and quite useless in robotic
applications, because of the limitation in the motion of platform. Moreover, generally, close to such bound-
aries the mechanism exhibits poor performances regarding some of its kinetostatic properties, such as kine-
matic sensitivity [19]. Therefore, for a given robot with fixed position of actuators, obtaining the Maximal
Workspace Circle (MWC), which could be regarded as a conservative workspace, leads to represent the
WFW as a convex and regular area. In this section, an interval-based algorithm is introduced to the end of
obtaining the MWC.
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Fig. 4. The MWC obtained for WFW of the 2T robot, represented in Fig. 1.

Algorithm 2, represents a pseudo-code to the end of obtaining the set of boundary boxes of WFW. In
short, this algorithm receives two sort of lists, namely, Lin and Lunc as set of WFW boxes (inside) and set
of uncertain boxes which have dimension less than ε (uncertain), respectively. In fact, a branch & prune
procedure start with a search space and bisects it. If any of bisected boxes fulfilled the criterion of the WFW,
then it will be added to the list of inside, Lin, otherwise it goes for another bisection. The procedure stops
when the prescribed accuracy ε is achieved and remained boxes are added to list of uncertain boxes, Lunc.
For each box belonging to Lunc, its midpoint is stored in A. Moreover, in line 5, four points are generated
around A in such a way that keep a distance of ε from A along the main four directions. If at least one
of these four points lies inside the Lin, then the corresponding box is a member of set of boundary boxes,
called LB. The mentioned procedure applies for all members of Lunc and finally a list of boundary boxes
entitled LB will be an input for the next algorithm.

The proposed algorithm in this paper for obtaining the MWC (for WFW) is based on a branch & prune
procedure and Alg. 3 represents the corresponding pseudo-code. Two sorts of information are needed to
start Alg. 3: (a) the set of boundary boxes of WFW, LB, obtained from Alg. 2 and (b) initial guess box,
prescribed by the user. This box could be any of boxes inside WFW, most of the times the middle one is the
best choice and converges more rapidly. The first step consists in bisecting the initial guess box (B0) by the
largest edge, then for the two new generated boxes, the corresponding distance to the set of boundaries, LB,
are computed separately. The one with the greater lower bound (Bg) is kept for further operation and the
other one is ignored. Then, Bg is bisected and the same procedure applies on two new generated boxes. This
continues until the desired accuracy, ε , is reached. The last small box, with an acceptable approximation,
could be regarded as a point, C0. This point could be an appropriated candidate of being the center of MWC,
if and only if, C0 is not close to the edges of B0. In other words, the distance of C0 to edges of B0 is greater
than ε . This means that the obtained center point have still the tendency to travel through the WFW to reach
the optimum center point for the MWC. Therefore the algorithm pursues the procedure by creating a new
generated box (B1) around C0 with the same size of B0. The procedure peruses the same computation as
mentioned for generated boxes, B1, B2, . . . , Bn, until the obtained center point is not close to the edges of
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Algorithm 3 Algorithm for finding the MWC

1: Input: LB , ε , B0 , C0 % as initial guess box and its center
2: Output: Ci , ri

3: i← 0
4: while (1) do
5: Create box Bi around Ci and size of diam(B0)
6: BC← Bi

7: i← i+1
8: while (diam(BC)> ε) do
9: BC1 ,BC2 ← Bisect(BC) by the largest edge

10: Calculate distance from BC1 and BC2 to LB, results DC1 and DC2

11: if min(inf(DC1))> min(inf(DC2)) then
12: BC← BC1

13: D← DC1

14: else
15: BC← BC2

16: D← DC2

17: end if
18: end while
19: Return Ci← Center(BC) %As MSFC center
20: Return ri←min(D) %As MSFC radius
21: if Ci is not close to the edges of Bi−1 then
22: break while
23: end if
24: end while
25: Return Ci ≡C f % MSFC center
26: Return ri ≡ r f % MSFC radius

the last generated box. The obtained point C f is the center of MWC and the radius can be computed by
calculating the distance of C f to the set of the WFW boundaries.

Figure 4 represents the evolution of the initial guess box, B0, given by the user, to find the optimal center
point of the MWC, C4 ≡C f . Initial guess box B0 is prescribed, but as the obtained center C1 is close to the
edges of B0, consequently, another generated box B1 is created around C1. The procedure has found another
candidate for being center point, C2, but as it is still close to the edges of the generated box B1, then it can be
readily inferred that center point still tends to go further and, based on the latter logic, a new box is created
about C2, called B2. Finally, the last obtained center point (C4 ≡ C f ) is far enough form the edges of last
generated box (B3), therefore it is the final and optimal center point of MWC.

6. CONCLUSION

This paper investigated a kinetostatic problem of planar cable-driven parallel robots, namely the wrench
feasible workspace. The problem was addressed by proposing two interval-based algorithm. The first
algorithm aimed at finding an optimal design where the y-coordinate of the position of one actuator was
subject to be optimized for a prescribed circle, upon considering wrench-feasible workspace. The second
algorithm obtained the corresponding maximal inscribed circle of the wrench-feasible workspace. Obtaining
such a region is a inherent asset in designing such a cable-driven parallel robot since leads to a safer and

CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium, 2013 9



more conservative workspace in which the mechanism may exhibit better kinetostatic performance. Ongoing
works include the extension of the proposed algorithms to the optimum dimensional synthesis for spatial
6-DOF cable-driven parallel robots.
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