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ABSTRACT
The wrench capability for a redundantly actuated parallel manipulator is defined as a measure of the max-

imum forces and moments that a mechanism can apply/sustain at the end-effector for a given pose. In this
paper, minimum allowable wrench capability is introduced to describe a subset of the wrench capabilities
which contain all forces and moments required for a given task. Limits on the forces and moments which
must be generated are described by the surface of a particular shape. Two commonly employed shapes are
the hyper-parallelepiped and hyper-ellipsoid. The usable workspace for this task is denoted as the wrench
workspace and is a subset of the reachable workspace. Inside the wrench workspace, the forces and mo-
ments required for the task can always be generated. A numerical example is provided using the 3-RRRS
redundantly actuated spatial parallel manipulator, and pure force, pure moment, and wrench workspaces are
computed and compared. The algorithm presented here is shown to easily map to multiple processors for
computation.
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ESPACES DES TORSEUR DES MANIPULATEURS PARALLÈLES AVEC REDONDANCE
D’ACTIONNEMENT UTILISANT LES TORSEURS À CAPACITÉ MINIMALE

RÉSUMÉ
La capacité de forces et couples (torseurs) pour un manipulateur parallèle avec actionnement redondant

peut être définie comme une mesure des forces et des moments maximaux permissibles que le mécan-
isme peut appliquer/soutenir à l’effecteur pour une pose de la nacelle donnée. Dans cet article, la capacité
minimale des torseurs est introduite pour décrire un sous-ensemble de l’espace de travail qui représente,
au minimum, le torseur minimum désiré. Ces torseurs minimaux peuvent être représentés par une forme
géométrique quelconque, où l’utilisation d’une forme particulière dépend des applications souhaitées pour
un manipulateur. Deux formes communément utilisées sont l’hyper-parallélépipède et l’hyper ellipsoïde.
Une tâche donnée peut être prévue d’utiliser les forces et les moments décrits par la capacité du torseur
minimal. L’espace utilisable pour cette tâche est l’espace de travail des torseurs qui est un sous-ensemble
de l’espace de travail accessible. L’algorithme présenté dans cet article est facilement appliqué à plusieurs
processeurs de calcul en parallèle. Un exemple numérique est fourni en utilisant le manipulateur parallèle
3-RRRS à actionnement redondant. L’espace de travail de force pure, de moment pur ainsi que l’espace
de travail des torseurs sont calculés et comparés. L’algorithme présenté peut être facilement utilisé sur les
processeurs de calcul en parallel.

Mots-clés : espace de travail ; redondance d’actionnement ; zonotope.
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NOMENCLATURE

F Wrench vector Subscripts
τττ Active joints torques HP Hyper-parallelepiped
m Number of active joints HE Hyper-ellipsoid
n DOF of task
T Task wrench set
A Available wrench set
W Actuator force workspace
fx, fy, fz Principal force components
mx,my,mz Principal moment components
J Jacobian matrix
r f x,r f y,r f z,rmx,rmy,rmz Semi-principal axes lengths
N Normal vector matrix
V Vertex matrix
D Offset matrix

1. INTRODUCTION

Parallel manipulators (PMs) are closed-loop mechanisms consisting of a moving platform connected to
a fixed base by two or more serial chains (limbs). Compared with serial manipulators, PMs tend to have
higher load-carrying capacity, rigidity, kinematic accuracy, and accelerations, making them useful for many
applications (e.g., [1, 2]). However, they suffer from small workspaces, complex forwards kinematics, low
manoeuverability and highly singular workspaces [2]. Research currently focuses on the use of redundancy
to overcome these drawbacks.

Redundancy occurs when the number of active joints, m, is greater than the dimensionality of the task, n.
Spatial tasks require control over three dimensions of both forces and moments, termed a wrench, F, and is
defined as follows:

F = [ fx, fy, fz,mx,my,mz]
T ,F ∈ Rn (1)

Redundancy in parallel manipulators can be divided into three main groups. Actuation redundancy [2]
occurs when normally passive joints are replaced by active ones. The kinematic architecture of the ma-
nipulator does not change with this type of redundancy and the reachable workspace of the manipulator
is unaffected. However, the wrench capabilities are affected [3] and forces of greater magnitudes can be
generated. Branch redundancy (e.g., cable actuated manipulators) also results in improved force capabili-
ties. However, since additional active kinematic branches are added, this often results in reduced reachable
workspace for manipulators with rigid links. Kinematic redundancy [2] adds to the mobility of the manip-
ulator and results in an infinitude of possible solutions to the Inverse Displacement Problem (IDP). This
type of redundancy occurs when extra active joints and links are added to a manipulator. Advantages can
include larger reachable workspaces, avoidance of kinematic singularities, and dexterity improvement [2].
Merlet [4] also states the importance of redundancy in solving the forward kinematics, avoiding singular
configurations, and improving obstacle avoidance, calibration, and force control.

Accomplishing a specific task requires the manipulator to be able to generate a given set of wrenches at
a particular pose. Many papers have been published which use the terms force capability [5], force-moment
capability [3, 6], and wrench capability [7–10] to loosely define the method of measuring the forces and/or
moments that a mechanism can generate at a particular pose. In an attempt to generalize the terminology
and definition of these capabilities, this paper uses the term “wrench capability” to define a measure of the
maximum forces and moments that a mechanism can apply/sustain at the end-effector for a given pose. For
the purpose of this paper, the concept of a “minimum allowable wrench capability” is also introduced. It
describes a subset of the wrench capabilities which exhibit all forces and moments required for a specific
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Fig. 1. Planar mechanism with associated A and three different T examples (adapted from [11]).

task. These are represented in the form of a geometric shape, where the shape’s surface defines the limits of
forces and moments that can be generated at the end-effector. Some of the most relevant shapes for parallel
manipulators are points, polytopes (namely hyper-parallelepipeds), and hyper-ellipsoids, as described in
[11]. In order for a pose to be able to generate the wrenches required for a task, it must be able to generate
wrenches equal to or exceeding those defined by the minimum allowable wrench capabilities. Thus, if the
minimum allowable wrench capabilities are not met or exceeded at at pose, that pose is not suitable for the
given task.

As introduced in [11], the set of desired wrenches that must be generated for a given task at a particular
pose is defined as the “Task Wrench Set”, T. Another set is used to describe all of the wrenches that a
manipulator can generate in a given pose, and is defined as the “Available Wrench Set”, A. Set A depends
primarily on the kinematic architecture and pose of the manipulator and the torque/force limits of each active
joint. Similar sets have been used for cable-driven manipulators in [11–13]. The minimum allowable wrench
capabilities at a given pose can be represented by T. A particular pose can generate the minimum allowable
wrench capabilities for a task if the following condition is met:

T ⊂A (2)

That is, if T is a subset of A, then all wrenches on the surface of T or inside T can be generated by the
manipulator. Figure 1 shows A and three different T for a planar mechanism with n = 2. Of the three T,
eq. (2) only holds true for T1. This is not the case if T is partially inside A (e.g., T2) or completely outside
of it (e.g., T3).

When eq.(2) is valid, the wrenches described by T can be generated at the end-effector; however, they may
not represent the maximum wrenches that can be generated. That is, the wrench capabilities may exceed the
minimum allowable wrench capabilities. T can be then used as a standard means of ensuring a task can be
accomplished at discrete poses throughout the reachable workspace. If the shape and size of T is fixed for a
particular task, then various poses can be iterated through to determine a subset of the reachable workspace
within which eq. (2) always holds true. The resulting workspace is known as the “wrench workspace” of the
manipulator. Two other workspaces will also be referred to in this paper, namely the “pure force workspace”
and the “pure moment workspace”. These are special types of wrench workspaces, in which no moments or
no forces are generated, respectively.

2. COMPUTING THE AVAILABLE WRENCH SET

Each active joint is capable of supplying a force/torque τi such that τimin ≤ τi ≤ τimax. If τττ is a vector
containing the actuator forces/torques of all active joints, where τττ ∈ Rm, then a linear mapping from the
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Fig. 2. Actuator Force Workspace (left) formed from the torque limits of three actuators (τ1,τ2,τ3) mapped to form
the Available Wrench Set (right) using the Jacobian matrix transformation [7].

joint space to the task space is accomplished using:

F = (J−1
q Jx)

T
τττ (3)

where, J = J−1
q Jx is the m×n screw-based Jacobian matrix, as defined by Tsai in [14].

In non-redundant manipulators n = m, thus J is square and therefore eq. (3) represents a unique mapping
from τττ to F. This is not the case for redundantly actuated manipulators, where n < m, as eq. (3) is no longer
unique. Instead, there can be multiple combinations of τττ which can produce exactly the same F.

As shown by Carretero and Gosselin in [7], all possible joint torque combinations that can be generated by
the manipulator can be defined as the “Actuator Force Workspace”, denoted W. This is represented geomet-
rically as a hyper-parallelepiped, as shown in Figure 2, where each facet represents a torque limit imposed
by τimin or τimax on a particular actuator. Each vertex of the hyper-parallelepiped represents all m actuators
working at their respective maximum or minimum torque limits. Since W is a m-dimensional convex poly-
tope – in fact a zonotope (centrosymmetrical convex polytope) – the linear mapping performed by J yields
a n-dimensional zonotope. That is, the linear mapping of a convex space also produces a convex space, and
therefore only the vertices of W must be mapped, as shown in Figure 2. A n-dimensional convex hull routine
– the smallest convex set that contains those points – can then be used to obtain A from the set of mapped
points. This mapping is uni-directional, as not all vertices of W are vertices of A, thus the vertices of A can-
not be mapped backwards to obtain W. This work currently uses the qhull [15] algorithm for computing the
convex hull. Bouchard et al. [2] describe a more computationally efficient and non-iterative convex hull rou-
tine, especially for spatial manipulators, which they refer to as the hyperplane shifting method. Gouttefarde
and Krut [16] provide a proof which leads directly to an improved version of this method.

3. MINIMUM WRENCH CAPABILITIES

Set A gives all of the possible wrenches that can be produced by the manipulator, where the surface of
the zonotope bounds the maximum wrenches that can be generated. This paper considers two techniques for
analysis of the minimum allowable wrench capabilities where T is defined as:

– A n-dimensional axis-aligned hyper-ellipsoid (HE), denoted by (THE) and given for the spatial case by:
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where, r∗ (∗ represents all applicable subscripts) represent the length of the axis-aligned semi-principal
axes of THE for forces and moments denoted by subscripts f and m respectively.
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Fig. 3. Minimum allowable wrench capabilities with the Task Wrench Set defined as a hyper-ellipsoid (left) and hyper-
parallelepiped (right) for a 2-dimensional case (i.e., n = 2).

The independent lengths for the force and moment semi-principal axes account for the mixed units in F.
This method, and projections of this method for planar cases, with r f x = r f y = r f z and rmx = rmy = rmz,
has been used in many papers [5, 7, 11], although some do not report on the geometrical significance.
The popularity of this technique is because it provides knowledge of the maximum magnitude of forces
and moments that the manipulator can sustain irrespective of the direction, making it useful for design
purposes.

– A n-dimensional axis-aligned hyper-parallelepiped (HP), denoted (THP), defined by the boundaries
BHPmin and BHPmax for the spatial case as:

BHPmin = [ fxmin, fymin, fzmin,mxmin,mymin,mzmin]
T

BHPmax = [ fxmax, fymax, fzmax,mxmax,mymax,mzmax]
T (5)

Similar to the Actuator Force Workspace, the facets of THP corresponds to the force and moment limits
imposed by eq. (5), while the vertices correspond to the 2n possible combinations of boundary limits
on their respective principal axes. That is, one boundary limit (either min or max) is selected for each
of the n principal axes. Each combination results in one vertex on THP. This technique becomes useful
when a task requires particular forces or moments in certain directions, which may not necessarily be
symmetric about the origin.

For clarity, consider the case of a planar manipulator where only the forces fx and fy and moment mz

can be generated. That is, equations (4) and (5) are projected onto a plane where fz = mx = my = 0. If we
consider only the forces for this manipulator, (i.e., mz = 0), THE becomes an origin-centred circle on the
fx– fy plane with radius r f = r f ∗, as follows:

f 2
x + f 2

y = r2
f (6)

Since any point located on the surface or inside this circle can be generated, it can be concluded that a
force of magnitude r f can be applied in any direction on the fx– fy plane, as shown in Figure 3. If we again
consider the planar manipulator case and only look at the forces, THP simplifies to a rectangle bounded by:

BHPmin = [ fxmin, fymin]
T

BHPmax = [ fxmax, fymax]
T (7)

Any force can be generated as long as fx and fy remain within the bounds defined by BHPmin and BHPmax.
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The values of r f ∗ and rm∗, as well as BHPmin and BHPmax, are fixed for the computation of the minimum
allowable wrench capabilities. The bounding parameters of these two techniques may be further increased
until the point where T becomes inscribed. Any additional increase in the wrench magnitude invalidates
eq. (2).

Since zonotopes can be represented as either a vertex or hyperplane representation (V and H respectively),
validation of eq. (2) can be simplified using the H-representation for A and the V-representation for T (with
a slight modification for THE). This validation can be performed by verifying the following equation:

NV≤ D (8)

where, N is a matrix whose rows are the unit normal vectors of the supporting hyperplanes, V is a matrix
where each column is a vertex of THP or point on the surface of THE whose normals are identical to those of
the supporting hyperplanes, and D is a matrix whose rows are the projected offsets of the corresponding hy-
perplanes along their respective normal vector. The reader should refer to Bouchard et al. [11] for additional
insight into the formulation of eq. (8).

4. WRENCH WORKSPACE

Performing a task requires a manipulator to be able to generate certain forces and moments, as well as
to be able to continuously apply/sustain them throughout a trajectory. This leads to the idea of a wrench
workspace, which describes the usable space within the reachable workspace of a manipulator where a
particular task can be performed. For simplicity, a constant orientation of the end-effector can be used to
determine the wrench workspace.

The search for the wrench workspace boundary can be accomplished by using a cylindrical grid to dis-
cretise the reachable workspace into a set of search vectors, similar to that used by Garg et al. [6]. To do
this, the reachable workspace is sliced into planes of constant elevation, where each of these planes is then
sliced into equal segments about its relative origin. Each segment is given a search vector which is used to
determine the corresponding boundary of the wrench workspace along that vector. This can be accomplished
by performing a line-search outwards from the origin along each search vector until the edge of the wrench
workspace is accurately detected. It is important to note that this search technique may not provide accurate
results if the reachable workspace contains voids, if the search vector encounters a singular configuration,
or if the wrench capabilities do not decrease radially outwards. Thus, unless a more robust search technique
is used, proper knowledge of the reachable workspace is required to obtain accurate results.

Each search vector performs a completely independent calculation and no sharing of information is re-
quired between the search vectors for determining the workspace boundaries. This allows the computations
to easily be mapped to multiple processors for performing parallel computations, and furthermore can be
classified as an embarrassingly parallel algorithm.

5. NUMERICAL EXAMPLES

This section gives the results for wrench workspaces of the 3-RRRS redundantly actuated spatial parallel
manipulator, as defined by Garg et al. [6], using the THE and THP techniques. For the purpose of these
examples, the topology and geometry of the manipulator is identical to that used in [6], and is shown in
Figure 4. That is, g∗ = h∗ = rp = 1m, rb = 2m, α = 120 ◦, and β = 240 ◦. Each joint is given identical torque
limits of ±1Nm (i.e., −τi jmin = τi jmax = 1Nm, for i = 1,2,3 and j = 1,2,3). This manipulator does not
contain any voids inside its workspace and its singular configurations are accounted for during runtime.

Examples of various wrench workspaces are obtained by defining the boundaries of T as±1.4N for forces
and ±1.0Nm for moments. For THE , this is represented by setting r f ∗ = 1.4N and rm∗ = 1.0Nm in eq. (4),
while for THP, the force and moment components of BHPmin and BHPmax are set to their respective values.
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Fig. 4. 3-RRRS redundantly actuated parallel manipulator architecture, as denoted in [6].

Results are also shown for both pure force and pure moment workspaces. For a pure force workspace, the
boundaries of the moment components are set to zero, and vice-versa for a pure moment workspace.

Results for the THE and THP pure force and pure moment workspaces, compared against the reachable
workspace, are shown in Figure 5. As expected, the THP workspaces are smaller than those using THE .
Considering the actual geometric shapes of THE and THP for the considered case, and noting that the bound-
aries are identical, it can be verified that THE ⊂ THP. Thus, when the workspaces resulting from the two
techniques are considered, the THP workspace is a subset of the THE workspace. An important distinction
between the THE and THP workspaces, are their symmetries. That is, while the THE workspace exhibits the
same symmetric properties as the 3-RRRS manipulator itself, the THP workspace does not exhibit the same
symmetric properties. This is the case as THP is defined relative to the fixed base frame, so any reorientation
of THP describes completely different minimum allowable wrench capabilities. Actually, the same issue can
be stated about any convex geometric shape other than the hyper-ellipsoid used in these examples, because
any rotation of an origin-centred sphere yields the same shape.

Using only THE , Figure 6 shows the results for a pure moment, pure force, and wrench workspace com-
pared with the reachable workspace. The pure force and pure moment workspaces are nearly identical to
those presented by Garg et al. [6], which were obtained using the same criteria. Application of the wrench
workspace to PM design is an important achievement, as the wrench workspace is a subset of both the
pure force and pure moment workspaces, and represents the usable space within which desired forces and
moments can always be generated. Considering the case of a lifting application, a force is required for trans-
lation of an object, while a moment is required for any object eccentricity and dynamic effect. It is very
rare that either will be used alone, thus the importance of the wrench workspace should not be understated.
Maximizing the size of the wrench workspace will allow for the design of wrench-optimised PMs.

6. CONCLUSIONS

The minimum allowable wrench capabilities for a redundant parallel manipulator are shown to be impor-
tant in determining the pure force, pure moment, and wrench workspace. Defining the Task Wrench Set as
either a hyper-ellipsoid or hyper-parallelepiped yields important information about the capabilities of a ma-
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Fig. 5. Comparison of pure force (a) and pure moment (b) workspaces for the THP and THE wrench capability tech-
niques.

nipulator in generating forces and moments for a particular task. The hyper-ellipsoid workspaces are shown
to exhibit the same symmetric properties as the manipulator, while the hyper-parallelepiped workspaces
are orientation-dependant. The algorithm presented can easily be mapped to multiple processors for com-
putation, and further improvements can be gained using the hyper-plane shifting method. Importance of
the wrench workspace as a design criteria for future parallel manipulators may allow for wrench-optimised
designs. This would allow manipulators to be optimised for a particular task, where the majority of the
workspace becomes usable for that task. Future work will consider improvements to the wrench workspace
boundary detection routine, accounting for singular configurations within the reachable workspace, and the
development of a parallel optimisation algorithm for designing wrench-optimised parallel manipulators. The
concept of an interval-based algorithm will also be considered as a possible improvement.
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