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ABSTRACT
In this paper, an approach to the kinematic calibration of serial manipulators with six revolute joints

in general using relative position and orientation measurements is presented, and a Thermo CRS A465
is used for illustration. The definition of the errors used for the calibration process are first introduced,
then the kinematic model that describes the manipulator pose (position and orientation) using the kinematic
parameters is discussed. The pose of the manipulator is specified by six independent position and orientation
parameters. The kinematic model presented is based on the nominal Denavit-Hartenburg (DH), along with
the kinematic error model that describes the changes in the manipulator pose to the relative errors between
the nominal and actual DH parameters. The results of two simulated measurements using the position and
orientation are presented, and the performance of the kinematic error identification technique is discussed.

Keywords: kinematic calibration; 6R serial manipulator; singular value decomposition; relative position
and orientation measurement.

CALIBRATIONS CINÉMATIQUE DU MANIPULATEUR SÉRIEL DE 6R UTILISANT DES
MESURES RELATIVE

RÉSUMÉ
Dans ce papier, une approche á la calibration cinématique des manipulateurs sériels avec six couples

rotöides utilisant généralement des positions et mesures d’orientation générale est présentée, et un Thermo-
CRS A465 est utiliser pour illustration. La définition des erreurs utiliser pour le procès de calibration sont
premièrement introduit, puis la model cinématique qui décris la pose du manipulateur (position et orien-
tation) utilisant les paramètres cinématique est discuté. La pose du manipulateur est spécifique pars six
paramètres de positions et orientations indépendant. La model cinématique présenté est baser sur la nominal
Denavit-Hartenburg (DH), avec la model d’erreurs cinématique qui décris les changements du pose du ma-
nipulateur aux erreurs relative entre les paramètres DH nominal et actuel. Les résultats des deux mesurèrent
simuler utilisant les positions et orientations sont présenter, et la performance du technique d’identification
d’erreurs cinématique est discuter.

Mots-clés : Calibration cinématique ; manipulateur sériel de 6R ; value seul de décomposition ; mesures de
position et d’orientation relative.
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1. INTRODUCTION

Robot manipulator calibration has been an active research topic for many years [1]. It is highly essential
for robot manufacturing systems, because manipulators generally have vastly superior repeatability [2] com-
pared to their accuracy, which can render them unfeasible for some applications. Mooring, Roth, and Driels
discussed and summarized the details of the kinematic calibration steps and conducted examples regarding
kinematic calibration of an industrial robot in [3]. The discrepancy between the accuracy and the repeata-
bility, which typically is several orders of magnitude, is due mainly to the embedded nominal kinematic
model in the controller [1, 3, 4]. It is evident that 95% of the measured errors are geometric errors, and the
remaining 5% are from non-geometric errors [5]. This makes kinematic calibration the primary focus for
research on accuracy enhancement.

Many researchers have addressed various issues in kinematic calibration procedures, whether it is in the
area concerning the development of kinematic model [6–8], measurement systems [9–13], algorithms for
parameter identification [14, 15], or compensating errors in the controller [3]. Absolute accuracy is difficult
to measure due to the lack of a well-defined and mechanically accessible base coordinate frame for the
manipulator. This coordinate reference frame is generally defined by the manufacturers to be inside the
body of the arm, and it is difficult to measure coordinates with respect to it. The process of calibrating the
transformation from the reference frame of the measurement system to the base frame can be expensive and
time consuming. This process can be avoided by using relative position measurements instead. There have
been several sets of results reported in [16–18].

In particular, Simpson and Hayes [16] first discussed the kinematic calibration of six-axis serial robots
using the relative measurement concept. The work involves the development of a kinematic calibration
procedure that uses relative position measurements along a precision ruled straight edge obtained using a
tool-flange mounted camera [17]. The procedure requires the robot to move incremental distances along
the ruler and uses image processing to estimate the geometric errors from differences in pairs of sequential
images. The method requires the the nominal DH parameters, which consists of 24 parameters to construct a
6R serial manipulator model. This method uses only the position measurements along a precision machined
straight edge results in only 18 of 24 parameter errors being identified. In [18], In-Chul Ha presented a
somewhat different relative position measurement concept. Ha’s method models the manipulator kinematics
using the modified DH parameters that takes into the account two consecutive parallel, or nearly parallel joint
axes. The experimental setup described in this paper consists of a 6 DOF manipulator (MOTOMAN UP 20),
a laser height sensor, a grid plate, and a PC.

The objective set out for the work presented herein is to develop a simple, low cost, kinematic calibration
method that does not rely on absolute measurements which can identify the absolute errors in the robot
kinematic model. It builds upon the work in [16, 17], which used only relative position measurements. In
addition, the work presented in this paper uses relative orientation measurements to enhance the precision
of the identified errors. Kinematic calibration is performed to improve the accuracy of the manipulator up
to the limit of its repeatability. Most of the kinematic calibration systems reviewed require the absolute
measurement of the end-effector pose, both position and orientation, which implies that the pose measure-
ments are made with respect to a fixed coordinate reference frame. However, since robot tasks generally
involves moving between either computed or taught poses, the implication is that comparing the geometric
differences between commanded and achieved poses should reveal the geometric errors in the kinematic
parameters of the nominal robot geometric model.

Consider an image of a chessboard viewed by a CCD camera mounted to a robot tool flange, as illus-
trated in Figure 1. If the robot is commanded to view the chessboard from a specified pose, the controller
must compute the joint angles required to attain the pose, thereby relying on the robot accuracy. If the
computed joint angles are stored and the robot is commanded to some other random pose, then to return
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to the stored joint angles, the final pose will rely on the repeatability. The geometric differences between
the corresponding images is a measure of the relative positioning and orienting errors, assuming a suitably
calibrated camera. The relative error in the two images is illustrated in Figure 3. Note that even the relative
measurement concepts in the existing literature, [16–18] for example, do not consider the orientation error,
presumably because it is difficult and expensive to measure with high precision. However, we shall demon-
strate that, at least conceptually, the relative measurement concept and kinematic model presented in this
paper will enable the identification of the absolute position and orientation error so that it can be calibrated
out, at least up to the limit of the repeatability of the robot mechanical system.

2. THE RELATIVE MEASUREMENT CONCEPT

The kinematic geometry of every robot manipulator is affected by errors resulting from machining toler-
ances. These errors manifest themselves as poor accuracy in tasks where robot poses are computed rather
than taught. This is because the required joint angles are determined by solving the inverse kinematics prob-
lem using the nominal kinematic geometry, rather than simply returning to a taught pose whose joint angles
are read from the joint encoders.

Fig. 1. Relative measurement setup for a Thermo CRS A465.

Fig. 2. Reference frames relative to the calibration board for the ith and jth poses.
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The relative measurement concept applied to parameter identification involves comparing two sequential
images of a registration object obtained with a robot-mounted camera. The errors in the kinematic model
parameters are embedded in the deviation between the two images. Figure 1 is a conceptual illustration of
the experimental setup. The measurements of the end-effector pose are made as the camera pose relative to
a known reference frame on the calibration board. Figure 2 illustrates the geometry of the measurements

Consider a Thermo CRS A465 moving to commanded poses i and j. When the A465 settles in the ith

pose, an image of the chessboard registration object is taken, and the pose of the camera is extracted from
the geometry of the image of the known chessboard. Another image after A465 settles in the jth pose. The
relative accuracy of the pose can be obtained from the difference between the ith and the jth configuration. In
every commanded configuration of A465, there exists a pose based on the nominal model and the measured
pose. The nominal model is embedded in the controller where the kinematic parameters are based on the
designed dimensions. Figure 3 shows an exaggerated illustration of the relative errors between two poses
observed from the vantage points of the nominal and actual kinematic geometry of the robot.

Fig. 3. Exaggerated relative pose errors.

The pose of the end-effector relative to the manipulator’s base can be expressed as an array containing
measures of both position and orientation

xb
e =

[
pb

e
Φ

b
e

]
. (1)

The linear displacement, or position, components of the measured end-effector pose using the configurations
i and j are the combination of the pose generated using the nominal kinematic geometry plus an additional
component created by the geometric errors:

pb
m,i = pb

n,i +∆pb
i , (2a)

pb
m, j = pb

n, j +∆pb
j . (2b)
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The relative position errors are described as the error of the deviations in the jth configuration with respect
to the deviations in the ith configuration, and can be written, in terms of Eqs. (2a) and (2b),as

∆prel = ∆pb
j −∆pb

i = (pb
m, j−pb

n, j)− (pb
m,i−pb

n,i). (3)

Figure 4 shows a simple illustration of rigid bodies with attached frames {1} and {2} rotated about the
z-axis relative to the base coordinate frames (Frame {b}) by angles of ψ1 and ψ2. This rotation displaces
the x and y axes of the attached frames by ψb

x,1, ψb
x,2 and ψb

y,1, ψb
y,2, respectively. The angle of the rotation of

the attached frames can be expressed as

ψ
b
x,2 = ψ

b
x,1 +ψ

1
x,2, ψ

b
y,2 = ψ

b
y,1 +ψ

1
y,2. (4)

(a) (b) (c)

Fig. 4. Relative angular displacements.

Reconsidering Figure 3 again, the measured orientation of the manipulator, m, moving in the commanded
configurations i and j can also be expressed in the same form as Eq. (2)

Φ
b
m,i = Φ

b
n,i +∆Φ

b
i , Φ

b
m, j = Φ

b
n, j +∆Φ

b
j , (5)

where Φ = [n̂, ŝ, â]T defines the orientation of the x, y, and z axes, respectively, of the coordinate frames of
interest. Now, the relative orientation errors can be written as

∆Φrel = ∆Φ
b
j −∆Φ

b
i = (Φb

m, j−Φ
b
n, j)− (Φb

m,i−Φ
b
n,i). (6)

The next step required for calibration is to construct a mathematical model that describes the pose of the
end-effector, which can be represented as

xb
e = k(q), (7)

where the parameter known as the joint variable array, q, contains a measure of angle θ for revolute joint
angles, or a measure of distance d for variable offsets in prismatic joints; the array x contains three linearly
independent position coordinates and three linearly independent orientations about the position coordinate
axes of a coordinate reference frame attached to the end-effector, e, expressed in the relatively non-moving
robot base coordinate reference frame, b ; while k(·) is the nonlinear function defined using a set of kine-
matic parameters, that maps q to x. This kinematic model represents the forward kinematics model of the
manipulator, and is embedded in the controller. The details of the kinematic parameters used in the model
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are selected by the robot designers. In this work, the nominal Denavit-Hartenberg (DH) parameters [19] are
used to model the spatial geometric relationships between sequential serial joints.

For typical applications, the only variable in Eq. (7) is the joint variable array q. However, every kinematic
parameter in Eq. (7) is treated as variable for kinematic calibration, because the purpose of the calibration
process is to identify the errors in the designed nominal values. Using the DH parameters, Eq. (7) can be
re-expressed as

xb
e = k(θ ,a,d,α), (8)

where θ , a, d, and α are the DH parameter arrays representing joint values, link lengths, link offsets, and
joint twists, respectively [19]. The deviation between the specified pose and the actual pose, largely caused
by the forward kinematic effects due to the DH parameter errors, is obtained from the measurement system
and can be expressed as the deviations from the nominal parameters, such that

xb
m = xb

n +∆xb = k(θ n +∆θ ,an +∆a,dn +∆d,αn +∆α). (9)

The subscript n denotes the nominal fixed parameters that are equal to the design data of the mechanical
structure, whereas the nominal joint angles are the recorded joint displacements during the measurements.
Let ∆ζ = [∆θ ,∆a,∆d,∆α]T be the errors in the DH parameters. The errors in the controllable parameter can
be thought of as bias errors, constant offsets from the prescribed values, which can be ∆θ o or ∆do depending
on the controllable joint type. In this paper we will consider only revolute joints, however the concept
applies equally to prismatic joints. Hence, the deviations in the remaining three parameters are fixed linear
and angular displacements: ∆a; ∆α; and ∆d.

The relative errors in the manipulator pose, ∆xb = xb
m−xb

n, give a measure of accuracy at the given pose.
Assuming that the deviations in the poses are small, the kinematic error can be found by evaluating the
Taylor’s series about the nominal DH parameters and considering only the first, linear terms.

∆xb =
∂k
∂θ

∆θ o +
∂k
∂a

∆a+
∂k
∂d

∆d+
∂k
∂α

∆α. (10)

This gives a linear approximation of the differential deviations of the DH parameters. Eq. (10) can then be
rearranged into

∆xb =
∂k
∂ζ

∆ζ = J∆ζ , (11)

where J is a M×N identification Jacobian matrix in the form of J = [Jθ ,Ja,Jd ,Jα ]. The dimension M
depends on the size of ∆xb. If both the orientation and position are measured, then M = 6np, where there are
three independent unit vectors describing the reference coordinate system basis directions (n̂, ŝ, â), and three
coordinates for the origin of the associated coordinate system relative to a non-moving reference coordinate
system,(px, py, pz), and np is the number of poses. If only relative position measurements are made, then
M = 3np. The dimension N depends on the number of kinematic parameters to be identified. The DH
convention used in this paper consists of 4 parameters for each joint, and the manipulator is a 6R serial
manipulator resulting in N = 24 parameters to be identified.

Using Eqs. (3) and (6), the kinematic error model for the relative measurement concept can be written as

∆xrel =

[(
∂k
∂θ

)
j
−
(

∂k
∂θ

)
i

]
∆θ o +

[(
∂k
∂a

)
j
−
(

∂k
∂a

)
i

]
∆a+[(

∂k
∂d

)
j
−
(

∂k
∂d

)
i

]
∆d+

[(
∂k
∂α

)
j
−
(

∂k
∂α

)
i

]
∆α,

(12)
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which can be expressed in the same form as Eq. (11)

∆xrel = Jrel∆ζ , (13)

where Jrel = Ji
j = J j− Ji is the identification Jacobian for relative measurement. Since the identification

Jacobian is a non-square matrix, Jrel is generally not invertible. An approximate solution for ∆ζ in Eq.
(13) can nonetheless be found by using a numerically robust application of the Moore-Penrose generalized
inverse:

∆ζ = (JT
relJrel)

−1JT
rel∆xrel = J+rel∆xrel. (14)

A suitable number of pose measurements, np, is required to identify ∆ζ . In order to converge to an optimal
result in the least-squares sense, Eq. (13) must be an overdetermined system where the number of linear
equations (3np or 6np) must be suitably greater than the 24 unknown parameters.

3. SIMULATION

A flowchart summarizing a simulation of kinematic calibration using the relative measurement concept is
presented in Figure 5. The input is the kinematic geometry of the manipulator being calibrated. A Thermo
CRS A465 was selected for illustration, and its nominal DH parameters are listed in Table 1. The algorithm
output consists of the identified DH parameter errors for the simulation.

Fig. 5. Flowchart for the simulation of relative measurement concept.

The simulation begins with the synthesis of random errors for the DH parameters to mimic those of an
actual manipulator. A trajectory in Cartesian space must then be selected for the end-effector. The inverse
kinematics of the A465 are then computed to determine the trajectory in joint space. Figures 6(a) and
6(b) illustrate the Cartesian trajectory and the corresponding required joint space trajectory planned for this
particular experiment, respectively.
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Joint Number, i θi (degrees) αi (degrees) ai (m) di (m)

1 θ1 90 0 0.33

2 θ2 0 0.303 0

3 θ3 90 0 0

4 θ4 -90 0 0.33

5 θ5 90 0 0

6 θ6 0 0 0.076

Table 1. The nominal DH parameters for Thermo CRS A465.

(a) (b)

Fig. 6. The specified set of poses: (a) The end-effector coordinate system origin locations, and (b) The corresponding
set of joint angles computed with the inverse kinematics.

The errors synthesized using Eq. (8) and (9) are stored in ∆ζ , and are added to the nominal DH parameter
values. The trajectories i and j, which are based on Eqs. (3) and (6), are

∆xrel = ∆xb
j −∆xb

i = (xb
m, j−xb

n, j)− (xb
m,i−xb

n,i), (15)

where ∆xrel = [∆prel,∆Φrel]
T .

The resulting Jacobian is used to obtain a first estimate of the synthesized errors, and the identified errors
can be added to the nominal values to yield a new estimate of the DH parameters as

ζ n,new = ζ n,old +∆ζ , (16)

and the least-squares procedure is repeated until the convergence criterion is met, where ∆ζ is below some
specified threshold. For the experiments reported herein, the convergence criterion is defined using the
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Euclidean 2-norm as [20]
||∆xrel−Jrel∆ζ ||2 ≤ εrank(V), (17)

where V is an orthogonal matrix factor of the identification Jacobian obtained using a form of singular value
decomposition (SVD), and ε is the machines computational precision, which varies between the machine’s
CPU architecture. The identification Jacobian is additionally useful, because rank(Jrel) indicates the number
of parameters that can be identified.

3.1. Singular Value Decomposition (SVD)
Consider the linear system of equations in Eq. (13), where Jrel is defined as the linear mapping from the

vector space ∆ζ to the vector space ∆xrel . In order to estimate ∆ζ in an overdetermined system of equations,
one must understand how Jrel maps the vector spaces. The nullspace of Jrel maps the vector space ∆ζ to
0, and the range of Jrel maps the vector space ∆ζ to ∆xrel . The dimension of the nullspace and range of
the matrix are referred to as the nullity and the rank, respectively. If Jrel is nonsingular, then its range will
consist of the entire vector space ∆xrel , and it’s rank is N, indicating the matrix has a full-rank. If Jrel is
singular, the rank will be less than N, because some subspace of ∆ζ is in the nullspace and what remains is
in the range of Jrel .

SVD decomposes the matrix of interest, Jrel , into the product of three matrix factors:

(Jrel)M×N = (UM×M)(SM×N)(VN×N)
T , (18)

where SM×N is an upper-diagonal matrix, whose elements on the diagonal consist the singular values, si, of
Jrel arranged in descending order; UM×M is a column-orthogonal matrix, whose same numbered elements si

are nonzero are an orthonormal set of basis vectors that span the range; VN×N is an orthogonal matrix whose
same numbered elements si are zero are an orthonormal basis for the nullspace.

Using SVD, the pseudo-inverse of the identification Jacobian can be computed as

(J+rel)N×M = (V)N×N(S−1)N×M(UT )M×M. (19)

Since S is an upper diagonal matrix consisting of singular values si, then S−1 is also an upper diagonal
matrix with elements 1/si.

When the vector ∆x is not 0, the vector may or may not lie in the range of Jrel . If the vector ∆xrel lies in
the range of Jrel , then the singular matrix does have a solution ∆ζ , or possibly more than one solution, since
any vector in the nullspace can be added to ∆ζ in any linear combination. If the vector ∆xrel is not in the
range of the singular matrix Jrel , then Eq. (13) has no solution. While an exact solution for ∆xrel may not
exist, an approximate solution can be constructed in a least-squares sense. In other words, the solution can
be obtained by finding the set of ∆ζ that minimizes the residual, r, of the solution:

r = min||Jrel∆ζ −∆xrel||. (20)

To approximate ∆ζ , in a least-squares sense using SVD, simply replace the reciprocals of singular values,
1/si by 0 if si is 0 or numerically close, where numerically close to zero refers to any floating point value
less than, or equal to εrank(V). Finally compute

∆ζ = VS−1(UT
∆xrel). (21)

3.2. Simulation Results
Two simulations were performed to examine the performance of the algorithm. In the first only rela-

tive position measurements were simulated, while in the second relative orientation measurements were
included.
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3.2.1. Simulated Relative Position Measurements
In the first simulation, random noise is added to the nominal DH parameters, and the corresponding sets

of joint angles were computed to follow the set of poses illustrated in Figure 6. Only relative position
measurements were used and the simulation converged after the fourth iteration and a total CPU time of
0.57 seconds, reporting the residual:

||∆xrel−Jrel∆ζ ||2 ≈ 1.1899×10−15.

The convergence threshold was set to εrank(V)≈ 5.3291×10−15, where rank(V) = 24 and ε ≈ 2.2204×
10−16 on the computer used.

Joint Errors [deg] Link Errors [mm]

∆θ sp ∆θ id % ∆αsp ∆α id % ∆asp ∆aid % ∆dsp ∆did %

1 0.175 0.175 0.000 -0.789 -0.789 0.000 0.891 0.891 0.000 0.367 0.000 100.0
2 -0.150 -0.150 0.000 0.254 0.254 0.000 0.253 0.253 0.000 -0.093 -0.093 0.000
3 0.011 0.011 0.000 0.141 0.141 0.000 0.422 0.422 0.000 0.235 0.235 0.000
4 -0.131 -0.131 0.000 0.017 0.017 0.000 -0.324 -0.324 0.000 -0.686 -0.686 0.000
5 -0.875 -0.875 0.000 -0.667 -0.667 0.000 -0.144 -0.144 0.000 -0.118 -0.118 0.000
6 -0.143 -0.143 0.000 0.564 0.000 100.0 -0.083 -0.083 0.000 -0.275 -0.275 0.000

RMS
0.0040 0.0001

Table 2. Simulation results of the kinematic calibration using relative position measurements.

Table 2 lists the identification results for the first simulation, along with the percent errors relative to
the specified parameter error values for the relative position measurements. The root mean square (RMS)
errors in the identified parameters from the specified parameter errors are also listed, and these results are
a measure of the accuracy of the identification. The simulation consists only of relative position error,
and rank(Jrel) = 22, which means that there are 2 of the 24 parameter errors were not observable, while
22 were identified correctly. As shown in Table 2, the two parameters that cannot be identified are ∆d1
and ∆α6. Because the relative position measurement concept does not account for the absolute location of
the manipulator base coordinate system origin, ∆d1 cannot be identified. Moreover, ∆α6 is unobservable
because of the absence of orientation measurements about the end-effector joint axis.

3.2.2. Simulated Relative Orientation Measurements
In the second simulation using relative pose measurements, the algorithm converged after the sixth itera-

tion and the total CPU time of 1.14 seconds with the following residual:

||∆xrel−Jrel∆ζ ||2 ≈ 3.6549×10−15.

However, once additional random noise was added to the nominal DH parameters, the simulation converged
after the fourth iteration and a total CPU time of 0.63 seconds, reporting a residual of

||∆xrel−Jrel∆ζ ||2 ≈ 3.8803×10−15.

Table 3 summarizes the results. The simulation incorporated both the relative position and orientation error
measurements. The corresponding identification Jacobian possessed rank(Jrel) = 23. This means that 23 of
the 24 parameters were identified correctly. In this case, ∆d1 still cannot be identified because information
regarding the base frame origin is lost in the subtraction leading to the relative pose errors.
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Joint Errors [deg] Link Errors [mm]

∆θ sp ∆θ id % ∆αsp ∆α id % ∆asp ∆aid % ∆dsp ∆did %

1 0.175 0.175 0.000 -0.789 -0.789 0.000 0.891 0.891 0.000 0.367 0.000 100.0
2 -0.150 -0.150 0.000 0.254 0.254 0.000 0.253 0.253 0.000 -0.093 -0.093 0.000
3 0.011 0.011 0.000 0.141 0.141 0.000 0.422 0.422 0.000 0.235 0.235 0.000
4 -0.131 -0.131 0.000 0.017 0.017 0.000 -0.324 -0.324 0.000 -0.686 -0.686 0.000
5 -0.875 -0.875 0.000 -0.667 -0.667 0.000 -0.144 -0.144 0.000 -0.118 -0.118 0.000
6 -0.143 -0.143 0.000 0.564 0.564 0.000 -0.083 -0.083 0.000 -0.275 -0.275 0.000

RMS
0.0000 0.0001

Table 3. Simulation results incorporating relative orientation measurement.

4. CONCLUSIONS

The relative measurement based calibration method presented in this paper identifies 23 out of 24 mod-
elled kinematic parameters. The lone unidentified parameter is an artifact of the non-observability of the
manipulator base coordinates. Absolute measurements are required to identify the final parameter correctly,
which requires expensive equipment to measure the absolute geometry with high precision. Despite the
unobservability of only one parameter, the relative measurement method leads to a low-cost system con-
structed with readily available off-the-shelf items such as a high-resolution camera and a laser printed chess
grid mounted to a plate that is capable of improving a six axis serial robot arms accuracy up to the same
order of magnitude as the manipulators repeatability. Furthermore, it is straightforward to implement in
a working production cell, or on the manufacturing floor. Moreover, it can easily be applied to any serial
manipulator.
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