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ABSTRACT
A novel architecture for a parallel Schönflies motion generator was recently proposed by C.C. Lee, con-

sisting of a CRRHHRRC linkage. The novelty of this architecture lies in a) its simplicity, as it comprises
only two limbs, thereby forming a single-loop closed kinematic chain and b) its actuator mechanism, which
is based on two-degree-of-freedom cylindrical joints. Moreover, its moving plate is coupled to the two
limbs by means of corresponding coaxial H pairs. This paper reports on the kinematics and singularity anal-
ysis of this robot, intended for fast pick-and-place operations. A prototype of the robot is currently under
development at McGill University’s Centre for Intelligent Machines.

Keywords: Schönflies motion generators; kinematics; Jacobian analysis; singularity analysis.

ANALYSES CINÉMATIQUE ET DE SINGULARITÉ D’UN ROBOT PARALLÈLE CRRHHRRC
POUR LA PRODUCTION DE MOUVEMENTS DE SCHÖNFLIES

RÉSUMÉ
M. C.C. Lee a proposé récemment une architecture novatrice pour un robot parallèle CRRHHRRC des-

tiné à la production de mouvements de Schönflies. L’aspect novateur de cette architecture porte sur a) sa
simplicité, car elle ne comporte que deux membres, ce qui se traduit par une chaîne cinématique à une seule
boucle, et b) son mécanisme d’actuation, basé sur des articulations cylindriques, qui comportent deux degrés
de liberté. En outre, la plate-forme mobile est couplée aux deux membres par des articulations cinématiques
coaxiales du type H. Cette communication fait le point sur la cinématique et l’analyse de singularité du robot
qui destiné aux opérations rapides de transfert. Un prototype de ce robot fait l’objet de travaux au Centre de
recherche sur les machines intelligentes de l’Université McGill.

Mots-clés : Mécanismes pour la production de mouvements de Schönflies ; cinématique ; analyse de la
jacobienne ; analyse de singularité.
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1. INTRODUCTION

Schönflies motions comprise three translations and one rotation, as seen on the motions of a waiter’s tray,
occur frequently in pick-and-place operations. Robots for industrial assembly and packaging, capable of
these motions are thus termed Schönflies motion generators (SMGs). Current R&D work in connection
with SMGs targets fast operations, their performance being measured in the number of test cycles that can
be executed by these robots in one second. The record is three cycles per second on an industry-adopted
trajectory: 25 mm up from a moving-plate (MP) home pose, followed by a 300-mm horizontal path, down
25 mm and back to the home pose following the same path in the opposite direction. Moreover, during
the horizontal segment of the path, the MP is to turn 180◦ cw in the first half of the cycle, 180◦ ccw when
returning.

Some parallel robots producing Schönflies motion can be cited: The McGill SMG [1], the H4 [2], [3],
I4L, I4R, Heli and Par4. Adept Technology’s Quattro is the fastest SMG in the market. Quattro is supplied
with four limbs that connect the MP with the base plate (BP). In the Quattro and I4L, the rotation is ob-
tained through gear trains, to provide for a rotation amplification [3]. The latter is needed because of the low
rotatability of the MP by virtue of the four limbs, which contributes to the complexity of the mechanism.
Recently, an alternative architecture was proposed by C.C. Lee [4], which entails coaxial helical (H) joints1

to achieve the rotation of the MP. H pairs being available off-the-shelf, a coaxial HH subchain can be readily
designed for producing a full rotation of the MP. Research on the feasibility of a HH mechanism, along
with the kinematics, dynamics, optimum design, prototyping, and control of a SMG with Lee’s architecture,
dubbed the Peppermill because of the resemblance of its MP with a large wooden peppermill, is now under-
way at McGill University’s Centre for Intelligent Machines, in collaboration with Japan’s Kinki University.
In this paper, the kinematic model, position and velocity analysis of the HH mechanism are introduced as a
first step of the feasibility study. The singularities of the mechanism are identified.

2. KINEMATIC MODEL OF THE PEPPERMILL

A schematic view of the Peppermill is illustrated in Fig. 1. Two CRR limbs are connected to the MP,
that carries a coaxial subchain of H joints. The Peppermill is made up of a single-loop linkage of the
CRRHHRRC type. The C joints of the linkage are driven by identical rotational motors in a differential
array of ball-screw drives (see Appendix A); the axis of the ith C joint, for i = 1, 2, termed here the ith-drive
axis, is parallel to the unit vector ai. Moreover, di and θi denote the translational and rotational displacement
variables of the ith limb, respectively, with di measured in units of length, θi in radians. Points Oi denote the
intersection of the ith-drive axis with the common normal to the two, which is the z-axis of the base frame.

The fixed origin O of the base frame is set at the midpoint of segment O1O2, as shown in Fig. 1. Unit
vectors parallel to the x, y and z axes are defined as i, j and k, respectively. The angle of rotation of the
proximal passive R joint is defined as λi, while ui and vi are unit vectors parallel to the axes of the proximal
and the distal links of the ith limb, respectively. Furthermore, ri and li denote the lengths of the proximal
and the distal links, respectively. The end of the distal link of the ith limb is coupled with the passive R pair
of the MP at point Pi. The pose of the MP is given by c = [x, y, z]T , the position vector of point C, and angle
ϕ , as shown in Fig. 1. Angle ϕ , in turn, is measured from a predefined orientation of the axially symmetric
MP.

1In this paper, the standard nomenclature of kinematic chains is used, whereby C, H and R denote, respectively, cylindrical, helical
(or screw) and revolute kinematic pairs.
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Fig. 1. Schematic view of Lee’s SMG

3. DISPLACEMENT ANALYSIS OF THE SMG

3.1. Vector Loop Equations
Vector

−−→
OiPi is described upon following two paths:

pi =
−−→
OiPi =

−−→
OiAi +

−−→
AiBi +

−−→
BiPi (1)

pi =
−−→
OiPi =

−−→
OiO+

−→
OC+

−→
CPi (2)

the first expression obtained along the ith limb, the second via point C of the MP, the two paths shown
in Fig. 1. Therefore, the first expression involves actuator coordinates di and θi, the second the Cartesian
coordinates of the MP, namely, x, y, z and ϕ .

The various vectors appearing in the rightmost-hand side of eq. (1) are readily expressed in terms of
actuator variables, namely,

−−→
OiAi = diai (3)
−−−→
O1A1 = d1i (4)
−−−→
O1A1 = d2j (5)

Moreover,

−−→
AiBi = riui(θi) (6)
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where

ui(θi) = cosθixi + sinθiyi (7)

u1(θ1) = cosθ1j+ sinθ1k (8)

u2(θ2) = cosθ2k+ sinθ2i (9)

and

−−→
BiPi = livi(θi,λi) (10)

where

vi(θi,λi) = cos(θi +λi)xi + sin(θi +λi)yi (11)

v1(θ1,λ1) = cos(θ1 +λ1)j+ sin(θ1 +λ1)k (12)

v2(θ2,λ2) = cos(θ2 +λ2)k+ sin(θ2 +λ2)i (13)

Expressions for vectors in the rightmost-hand side of eq. (2) are given below:

−−→
OiO = −−−→

OOi (14)
−−→
OOi = oi = b0ik (15)
−−→
OO1 = o1 =−b0k (16)
−−→
OO2 = o2 = b0k (17)

In eqs. (16–17), b0 is the distance between O and Oi, as shown in Fig. 1. Moreover,

−→
OC = c =

 x
y
z

 (18)

and

−→
CPi = piϕk (19)
−→
CP1 = p1ϕk (20)
−→
CP2 = p2ϕk (21)

In eqs. (20–21), pi is the pitch of the ith H pair.
Upon substituting eqs. (4–21) into eqs. (1) and (2), one obtains two corresponding expressions for the

same vector pi, namely,

pi = diai + riui(θi)+ livi(θi,λi) (22)

pi = −b0ik+ c+ piϕk (23)

Upon equating the right-hand sides of eqs. (1) and (2), thereby closing the loop, one obtains

diai + riui(θi)+ livi(θi,λi) =−b0ik+ c+ piϕk (24)

which is the mechanism loop-closure equation.
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3.2. Inverse Displacement Analysis
For the inverse displacement analysis, the actuator-joint variables, d1, d2, θ1 and θ2, are to be obtained

from both the position vector c = [x, y, z]T and angle ϕ , which define the pose of the MP.
Upon pre-multiplying the expression pi of eq. (22) by aT

i , one obtains

aT
i pi = diaT

i ai + riaT
i ui(θi)+ liaT

i vi(θi,λi) = di (25)

Note that, aT
i ai = 1, and ai is perpendicular to both ui and vi, whence aT

i ui = 0 and aT
i vi = 0.

Furthermore, upon pre-multiplying pi of eq. (23) by aT
i , for i = 1,2, one obtains,

aT
1 p1 = iT (b0k+ c+ p1ϕk)

=
[

1 0 0
]
(

 0
0
b0

+

 x
y
z

+

 0
0

p1ϕ

) = x (26)

aT
2 p2 = jT (−b0k+ c+ p2ϕk)

=
[

0 1 0
]
(

 0
0

−b0

+

 x
y
z

+

 0
0

p2ϕ

) = y (27)

From eqs. (25–27), d1 and d2 are readily obtained as

d1 = x, d2 = y (28)

Next, angle θi of the ith actuated joint is to be derived upon eliminating angle λi of the passive joint. From
eqs. (22–24), one obtains

pi −diai = riui(θi)+ livi(θi,λi) (29)

Note here that pi and diai are known. For simplicity, the left-hand side of eq. (29) is defined as qi. Equa-
tion (29) then leading to

livi(θi,λi) = qi − riui(θi) (30)

In order to eliminate the passive joint variables vi(θi,λi), both sides of eq. (30) are premultiplied by their
corresponding transpose, whence,

l2
i vT

i vi = qT
i qi −2riqT

i ui + r2
i uT

i ui

or
l2
i = qT

i q′
i −2riqT

i ui + r2
i (31)

Hence,
2riqT

i ui = qT
i qi + r2

i − l2
i (32)

Upon substituting eq. (7) into eq. (32), one obtains

2riqT
i (cosθixi + sinθiyi) = qT

i qi + r2
i − l2

i

where θi is obtained from the relation

(qT
i xi)cosθi +(qT

i yi)sinθi =
qT

i qi + r2
i − l2

i

2ri
(33)

Furthermore, the unit vector of the distal link vi is given from eq. (30) as

vi =
qi − riui

li
(34)

Equations (28) and the solutions of eq. (33) yield the inverse displacement solutions of the mechanism.
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3.3. Forward Displacement Analysis
In this case, the position c = [x, y, z]T and the orientation ϕ of the MP are determined from the prescribed

actuated-joint variables, di and θi, for i = 1,2. From eqs. (28), the coordinates x and y of the MP are given
directly in terms of the actuated-joint variables d1 and d2, which need no further work, i.e.,

x = d1, y = d2 (35)

The loop-closure equations (24) are expressed in vector form as d1
0
0

+

 0
r1 cosθ1
r1 sinθ1

+

 0
l1 cos(θ1 +λ1)
l1 sin(θ1 +λ1)

 =

 0
0
b0

+

 x
y
z

+

 0
0

p1ϕ

 (36)

 0
d2
0

+

 r2 sinθ2
0

r2 cosθ2

+

 l2 sin(θ2 +λ2)
0

l2 cos(θ2 +λ2)

 =

 0
0

−b0

+

 x
y
z

+

 0
0

p2ϕ

 (37)

From the first row of eq. (37) and the first of eqs. (35), one obtains

d1 = r2 sinθ2 + l2 sin(θ2 +λ2) (38)

whence the passive-joint angle λ2 is derived as

λ2 = arcsin(
d1 − r2 sinθ2

l2
)−θ2 (39)

Likewise, the passive-joint variable λ1 is derived from the second row of eq. (36) and the second of eqs. (35)
as

d2 = r1 cosθ1 + l1 cos(θ1 +λ1), λ1 = arccos(
d2 − r1 cosθ1

l1
)−θ1 (40)

From the third rows of eqs. (36) and (37), moreover,

b0 + z+ p1ϕ = r1 sinθ1 + l1 sin(θ1 +λ1) (41a)

−b0 + z+ p2ϕ = r2 cosθ2 + l2 cos(θ2 +λ2) (41b)

The right-hand sides of eqs. (41a & b) are known because λ1 and λ2 have already been derived in eqs. (39
& 40), respectively, while z and ϕ are obtained from the relation below:[

1 p1
1 p2

][
z
ϕ

]
=

[
r1 sinθ1 + l1 sin(θ1 +λ1)−b0
r2 cosθ2 + l2 cos(θ2 +λ2)+b0

]
(42)

which can be inverted as long as the coefficient matrix on the left-hand side is non-singular. This is the case
as long as p1 ̸= p2, i.e., as long as the pitches of the two H joints of the MP are distinct.

4. JACOBIAN ANALYSIS

4.1. Jacobian Matrix of the SMG
The two Jacobian matrices of the Peppermill are derived by applying the approach based on virtual dis-

placements to the loop closure equation (24), as proposed by Arai [5], thereby deriving

δdiai +diδai + δ riui(θi)+ riδui(θi)+δ livi + liδvi

= −δb0ik−b0iδk+δc+(δ piϕ + piδϕ)k+ piϕδk (43)
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Further it is recalled that the link lengths ri and li, the pitch pi of the H joint, and the unit vectors ai and ki

are constant.Hence, the variations undergone by these quantities, as appearing in eq. (43), vanish, eq. (43)
thus simplifying to

δdiai + riδui(θi)+ liδvi = δc+ piδϕk (44)

From eq. (7),

δuiθi = δ (cosθixi + sinθiyi)

= (−sinθixi + cosθiyi)δθ = uθ iδθ (45)

uθ i = (−sinθixi + cosθiyi) (46)

Substituting eq. (46) into eq. (44), one obtains,

δdiai + riuθ iδθi + liδvi = δc+ piδϕk (47)

Upon pre-multiplying both sides of eq. (47) by aT
i and by vT

i , one obtains two additional relations:

δdiaT
i ai + riaT

i uθ iδθi + liaT
i δvi = aT

i δc+ piδϕaT
i k (48)

δdivT
i ai + rivT

i uθ iδθi + livT
i δvi = vT

i δc+ piδϕvT
i k (49)

As shown in Fig. 1, the various vectors involved in the foregoing equations obey the relations: ai ⊥ ui,
ai ⊥ uθ i, ai ⊥ vi, ai ⊥ δvi and ai ⊥ k. Therefore, the scalar products of these pairs of vectors vanish. As
well, two additional relations are recalled:

aT
i ai = 1, vT

i δvi = 0

equations (48) and (49) thus reducing to

δdi = aT
i δc (50)

rivT
i uθ iδθi = vT

i δc+ piδϕvT
i k (51)

with δc representing a small displacement of the position of point C of the MP, of components δx, δy and
δ z.

Equations (50 & 51) express the relationship between the small displacement δc and the small angle δϕ
of the MP with the small variations of the actuated-joint variables δdi and δθi of the ith driving unit.

Relationship between the small displacements of the MP and those of the actuated joints are expressed
below using Jacobian matrices:

aT
1 0

aT
2 0

vT
1 p1vT

1 k
vT

2 p2vT
2 k




δx
δy
δ z
δϕ

=


1 0 0 0
0 1 0 0
0 0 vT

1 uθ1 0
0 0 0 vT

2 uθ2




δd1
δd2

r1δθ1
r2δθ2

 (52)

The unit vectors vi and uθ i are represented componentwise as

v1 =

 0
v1y

v1z

 ,v2 =

 v2x

0
v2z

 (53)
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uθ1 =

 0
uθ1y
uθ1z

 ,uθ2 =

 uθ2z
0

uθ2z

 (54)

Upon substitution of the foregoing vectors into eq. (52), one obtains
1 0 0 0
0 1 0 0
0 v1y v1z p1v1z

v2x 0 v2z p2v2z




δx
δy
δ z
δϕ

=


1 0 0 0
0 1 0 0
0 0 vT

1 uθ1 0
0 0 0 vT

2 uθ2




δd1
δd2

r1δθ1
r2δθ2

 (55)

or, in compact form,

Aδx = Bδθ (56)

where A and B are the two Jacobian matrices of the Peppermill, namely,

A =


1 0 0 0
0 1 0 0
0 v1y v1z p1v1z

v2x 0 v2z p2v2z

 (57)

B =


1 0 0 0
0 1 0 0
0 0 vT

1 uθ1 0
0 0 0 vT

2 uθ2

 (58)

4.2. The Singularity of the First Kind
The singularity of the first kind [6], which is also referred as the inverse-kinematics singularity [7], occurs

when the Jacobian matrix B of eq. (55) is singular, i.e., when

det(B) = (vT
1 uθ1)(vT

2 uθ2) = 0 (59)

Geometrically, this singularity occurs when v1 ⊥ uθ1 or v2 ⊥ uθ2, i.e., when the unit vector vi of the
proximal link and the unit vector ui of the distal link are parallel in at least one driving unit. Figure 2
illustrates a posture with the singularity of the first kind.

4.3. The Singularity of the Second Kind
The singularity of the second kind [6], which is also referred as the direct-kinematics singularity, occurs

when the Jacobian matrix A of eq. (57) becomes singular. The singularity of matrix A,is readily established
by virtue of the block structure of the matrix, namely,

det(A) = det




1 0 0 0
0 1 0 0
0 v1y v1z p1v1z

v2x 0 v2z p2v2z




= det
([

1 0
0 1

])
det

([
v1z p1v1z

v2z p2v2z

])
= v1zv2z(p2 − p1) = 0 (60)

If v1z = 0, or v2z = 0, or p2 − p1 = 0, then matrix A becomes singular. Geometrically, these conditions
occur when
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ui

vi

Fig. 2. A robot posture with a singularity of the first kind

1. The unit vector of the distal link of at least one limb lies in the xy plane, i.e., when the unit vector the
distal link of at least one limb is normal to the z-axis, and

2. The pitch of the upper H pair equals that of its lower counterpart.

Condition 2 can be readily avoided by choosing the pitches of the H pairs distinct. Even better, we chose
the pitches of identical absolute values but of opposite signs, i.e., we chose these two pitches identical, but
of opposite hands. Figure 3 illustrates a posture with a singularity of the second kind.

ui

v

k

i

Fig. 3. A robot posture with a singularity of the second kind

4.4. The Singularity of the Third Kind
The singularity of the third kind [6], which is also referred as the complex-kinematics singularity, occurs

when the the two Jacobian matrices A and B become singular. This singularity is of a different kind, as not
every robot admits it. Indeed, this singularity depends on the robot architecture. Given the symmetries with
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which the Peppermill was designed, this robot admits the singularity of the third kind, as illustrated in Fig.
4.

ui

vi

k

Fig. 4. A robot posture with a singularity of the third kind

5. CONCLUSIONS

The position analysis and Jacobian analyses of a CRRHHRRC Schönflies motion generator (SMG),
dubbed here the Peppermill, were discussed here. Vector-loop analysis is applied to derive the position
relations of the mechanism. Inverse- and direct-kinematics relations were derived. The two Jacobian ma-
trices were also derived by means of the vector loop equations as applied to virtual displacements. The
postures at which the Peppermill finds itself at each of the singularities of the three kinds were identified
and illustrated with figures.
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APPENDIX

Appendix A Conceptual Design of the Cylindrical Joints
Figure A.1 illustrates conceptual design of the cylindrical joint which are driven by identical rotational

motors in a differential array of helical-screw drives.

Oi
θi

η
iL

η
iRdi

ui

ai

motor L

motor R

screw L
(Left Hand)

(Right Hand)

nut L

nut R

screw R

Fig. A.1. Conceptual design of the cylindrical joint

Relationships between displacement of the cylindrical joint, di and θi, and angles of motors, ηiL and ηiR,
are given as follows:

piL(ηiL −θi) = di (A.1)

piR(ηiR −θi) = di (A.2)

where piL > 0 and piR < 0 represent the pitches of the Left Hand screw and Right Hand screw, respectively.
For simplicity, i(= 1,2), which represents the number of cylindrical joint, will be dropped from equations
after here. In order to simplify the mechanical design and control system of the cylindrical joints, we applied
a symmetrical design. Pitches of the screws are expressed by common pitch pc(> 0) as,

pL = pc (A.3)

pR = −pc (A.4)

From eqs. (A.1–A.4), relationships between displacement of the cylindrical joint, d and θ , and angles of
motors, ηL and ηR, in the symmetrical design are simply expressed by a linear equation using matrices as,[

pc 0
0 −pc

][
ηL

ηR

]
=

[
1 pc

1 −pc

][
d
θ

]
(A.5)

Inverse displacement analysis which gives the angles of motors, ηL and ηR, from the cylindrical joint
valuables, d and θ , is given as,[

ηL

ηR

]
=

[
pc 0
0 −pc

]−1[ 1 pc

1 −pc

][
d
θ

]
=

[
1
pc

1
− 1

pc
1

][
d
θ

]
(A.6)

In the same way, forward displacement analysis is given as,[
d
θ

]
=

[
1 pc

1 −pc

]−1[ pc 0
0 −pc

][
ηL

ηR

]
=

[ pc
2 − pc

2
1
2

1
2

][
ηL

ηR

]
(A.7)
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Jacobian analysis of the cylindrical joint is given by differentiating eq. (A.7) with respect to time as
follows: [

ḋ
θ̇

]
=

[ pc
2 − pc

2
1
2

1
2

][
η̇L

η̇R

]
= Jc

[
η̇L

η̇R

]
(A.8)
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