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ABSTRACT
In the process of designing a robot, it is of paramount importance to define a kinetostatic performance

criterion, where various performance indices are proposed for this purpose. These indices should be valid
and correspond to the practical environment. The main goal of this paper is to provide a comprehensive
investigation for the criteria proposed in the literature, based on the physical characteristics of the problem.
The concept of this paper can be well extended to general parallel mechanisms. Among the suggested per-
formance indices, dexterity, manipulability, condition number, and also the recently proposed, maximum
point-displacement and rotational kinematic sensitivity are the most popular ones and are subject to be ana-
lyzed. In this paper, first according to the kinematic uncertainties, some performance indices are reviewed.
Then, according to these indices, their ability to predict the errors for a 3-RPR parallel mechanism is con-
sidered. That is, a finite error is assumed in the joint space and the resulted error in the Cartesian space of
the moving platform is compared with the values returned by these indices. Finally, it has been concluded
that the maximum point-displacement and rotational kinematic sensitivity return more valid interpretation.

Keywords: 3-RPR planar parallel mechanisms; point-displacement kinematic sensitivity; rotational kine-
matic sensitivity; kinetostatic performance indices.

LA SENSIBILITÉ CINÉMATIQUE D’UN MÉCANISME PARALLÈLE 3-RPR

RÉSUMÉ
Dans le processus de conception d’un robot, il est d’une importance primordiale de définir un critère de

performance cinétostatique, où diverses performances indices sont proposées à cet effet. Ces indices doivent
être valides et correspondre à l’environnement pratique. L’objectif principal de cet article est de fournir une
enquête approfondie pour les critères proposés dans la littérature, en fonction des caractéristiques physiques
du problème. Parmi les indices de performance proposées, la dextérité, maniabilité, le conditionnement,
et aussi l’indice récemment proposé, la sensibilité cinématique de translation et de rotation sont les les
plus populaires et font l’objet d’analyser de cette étude. Dans cet article, d’abord selon les incertitudes
cinématiques, certains indices de performance sont examinés. Puis, selon ces indices, leur capacité à prédire
l’erreur pour un mécanisme parallèle 3-RPR est pris en compte. Autrement dit, une erreur finie est supposée
dans l’espace articulaire et l’erreur entraînée dans l’espace cartésien de la plate-forme mobile est comparée
avec les valeurs calculés par ces indices. Enfin, il a été conclu que la sensibilité cinématique de translation
et rotation une interprétation plus valide.

Mots-clés : mécanismes parallèles planaires à 3-ddl ; la sensibilité cinématique de translation ; la sensibilité
cinématique de rotation ; indices de performances cinématiques.
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1. INTRODUCTION

Parallel Mechanisms (PMs), due to some of their remarkable kinetostatic properties, nowadays are de-
veloping rapidly and becoming the-state-of-the art in wide range of industrial and academical applications
such as motion simulators [1], Nano mechanisms [2, 3] and many other devices and parallel kinematic ma-
chines [4]. PMs are well known for their ability to perform trajectory that demand high precision in terms
of their kinematic and dynamic properties. The potency of PMs is more apparent when a relatively high
payload with respect to the size of the robot should be carried by the moving platform. A flight simulator
can be regarded as a solid instance for this concept, where using a Gough-Stewart platform is a dominant
concept in this field. However, recently, their kinematic precision has been questioned and is becoming
the subject of many critical reviews reported in literature [5, 6]. This property can be affected by various
environmental or structural circumstances, such as design errors, flexibility of the links, thermal expansion
and etc. [7]. It should be noted that the study conducted in this paper, can be well extended to all general
PMs, but here, more emphasis is placed on a 3-RPR Planar Parallel Mechanism (PPM).
Among several indices suggested for the purpose of comparison and design of PMs, there are some cases
which do not address the effects of the input error as a single criterion [8], i.e., they measure the perfor-
mance of the PMs, by blending the input errors and the design errors. However, recently, a kinetostatic
index, referred to as kinematic sensitivity, has been proposed, which measures the effects of input errors in
the Cartesian space of PMs. In this paper, kinematic sensitivity is subject to be investigated and examined for
coincidence with the actual calculated error, in this paper. As stated in [7], up to now, a consensus among the
robotics community has not been drawn on the latter issue. The main challenge, which is a major deterrent
in filling the latter gap, consists in establishing an appropriate mathematical definition of uncertainties, i.e.,
a proper selection of the norms involved in the problem, which are present in practice. In fact, none of
the proposed indices meet the required physical applicability, as the unit-inconsistent quantities cannot be
merged and normalized together.
In fact, the robustness of a PM against the kinematic uncertainties depends on a set of geometric properties
associated to the mechanism [5]. As a result, different performance indices have been developed in order to
optimize and compare PMs in order to propose the most promising design for prescribed tasks and motion
patterns [9, 10].
Among various performance indices proposed for robotic mechanical systems, PMs, among others, the most
popular ones are manipulability [11], dexterity [12] and condition number [13]. By the way, a general PM
performs both translations and rotations and consequently, its Jacobian matrix compromises dimensionally
non-homogeneous components. Therefore, as the aforementioned indices normalize the unit-inconsistent
variables, changing the scale of the variables may change the result significantly and thus they do not return
physically applicable values about the performance of PMs [5, 14–17].
Furthermore, from the above, one can conclude that some well-known indices, such as condition number,
may not work properly, even for the cases where the PM performs pure translations or pure rotations [7].
In addition, some indices suffer from some other degenerations. For example, the manipulability index is
invariant to the size of the moving platform and therefore, does not distinguish the difference between a
large and a small moving platform, which is a serious limitation of this index [5, 18].
There are many perspectives promoted to overcome the latter insufficiencies and stimulated the interest of
many researchers during the last decade. For instance, a weighted version of the manipulability index is
suggested in [14]. Moreover, on the same regard, some attempts are made to circumvent the above problem
by normalizing the Jacobian matrix, which is investigated in [15, 18–20] and more precisely the so-called
characteristic length, proposed in [21]. By the way, all these methods are unable to result in physically appli-
cable values, as the fact of unit-inconsistency of the components of the Jacobian matrices is not disputable.
The study carried out in [16] investigates the kinematic sensitivity index by analyzing two different types
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of norms, namely 2-norm and ∞-norm. To this end, kinematic sensitivity is computed in three points of the
workspace of a given Gough-Stewart platform, using various combination of the norms, and finally it has
been concluded that in practice, the results returned by this index does not correspond to the calculated error.
In order to circumvent the latter deficiency in the process of optimization, a maneuver has been proposed
in [5] which considers two separate indices for translational and rotational Degree-of-Freedoms (DOFs).
These two indices are called point-displacement and rotational kinematic sensitivity, respectively, which
provide a reliable interpretation about the performance of robotic mechanical systems, PMs among others.
The main contribution of this paper is providing an investigation upon putting into contrast the differences
and credibility of these two indices with the others. The analytical and geometrical procedures for com-
puting these indices are extensively surveyed in [22] and, as the fundamental contribution of this paper, the
validity and applicability of them to the practical environments is investigated.
The remainder of this paper is organized as follows. First, we touch upon some preliminary concepts of
kinematic analysis, such as Forward Kinematic Problem (FKP), Inverse Kinematic Problem (IKP) and the
Jacobian matrix of the mechanism under study, i.e., the 3-RPR PM. The paper pursues the study by inves-
tigating some performance indices, and also among them the maximum kinematic sensitivity, considering
the relation between the joint rate space and the Cartesian velocity space. Then, two different criteria are
introduced, upon which, the reliability and coincidence of performance indices to the calculated error of
the workspace of the PM can be examined. Subsequently, the paper continues with applying the involved
performance indices to the 3-RPR PPM and compares the credibility of the indices, according to the degree
of coincidence of the outputs of the latter indices to the calculated error of the PPM. Finally, the paper
concludes by specifying some enlighten deduction about the degree of authenticity of the concerned perfor-
mance criteria.

2. KINEMATIC MODELING OF THE 3-RPR PARALLEL MECHANISM

As aforementioned, most performance indices proposed in the domain of optimization and comparison
of PMs are defined on the basis of input-output velocity relation which is tantamount to the concept of
the Jacobian matrix. Thus, calculation of these indices necessitates a thorough review of the first-order
kinematic, and then, IKP and FKP of PMs, which is surveyed comprehensively in many studies, such
as [17] and [23]. Thus their results are to be broadly reviewed in what follows.

2.1. Kinematic Modeling, First Order Relations
Figure 1 depicts schematically a 3-DOF 3-RPR PM . The fixed base and moving platform are defined

by ∆A1A2A3 and ∆B1B2B3, respectively. The R passive joints are connected to Ai and Bi, i = 1,2,3, where
a prismatic actuator, with adjustable leg length as ρi, connect them. The unit vectors along the prismatic
actuators are defined by ni =

[
nix niy 0

]T , whence ρρρ i = ρini. The position of Bi in the fixed and moving
frame is denoted by bi and b′i, respectively. It should be noted that, here and throughout this paper, (·)′
stands for a representation of its vector argument in the moving frame. The rotation matrix performing the
transformations from the fixed frame into the moving frame can be formulated as follows:

R =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 , (1)

where φ is the angle of the rotation of the moving frame with respect to the fixed frame. Considering ai as
the position of the point Ai in the fixed frame, with respect to the geometry of the robot, leads to:

ρρρ i = p+Rb′i−ai, (2)
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Fig. 1. The 3-RPR planar parallel mechanism [24]. The circle indicates the points in which the error is sought to be
calculated.

where p is the position vector of the center of the moving platform (point O′) with respect to O, i.e., the
origin of the fixed frame.

2.2. The IKP
According to Eq. (2), parameters ai, b′i, p and also the the angle φ are already known for calculating the

IKP, thus one has the following for the IKP:

ρi = ‖ρρρ i‖2 =

√(
p+Rb′i−ai

)T (p+Rb′i−ai
)
, (3)

where ρρρ =
[
ρ1 ρ2 ρ3

]T is the input vector, i.e., its components are the leg length of the prismatic actua-
tors.

2.3. The FKP
In what concerns the FKP, parameters ai, b′i and ρi are known and the problem pertains at finding p and

φ , i.e., the pose (position and orientation) of the moving platform [24, 25], which construct the output vector
x =

[
x y φ

]T . Usually, finding a closed-form solution for the FKP of PMs is a complicated task which
may initiate both mechanical and mathematical challenges. To this end, some numerical approaches are
suggested, such as Newton-Raphson method and other complex mathematical maneuvers such as exploring
the problem in seven-dimensional space, using the so-called Study’s parameters [26]. The FKP of 3-RPR
PM is investigated in detail in [25, 26] and the results revealed that it admits up to six solutions, including
complex and real ones.
In the study carried out through this paper, a numerical approach, following the guidelines of the trust-
region-reflective method [27], is implemented to find the solutions to the FKP of the 3-RPR since only one
solution is sought to be obtained from the six possible one. To this end, Eq. (3), for i = 1, · · · ,3, leads to a
system of three equations and three unknowns x, y and φ , which should be solved upon the above mentioned
numerical method, by having the input variables, i.e., ρ1, ρ2 and ρ3.
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2.4. Input-Output Velocity Relations, Jacobian Matrix
Jacobian matrix, arisen from the first order-kinematic relation, represents the mapping between input and

output velocity (infinitesimal variation) vectors, namely ρ̇ρρ =
[
ρ̇1 ρ̇2 ρ̇3

]T and t =
[
ẋ ẏ φ̇

]T , respec-
tively. Various approaches are proposed in order to obtain the Jacobian matrix of PM which is beyond the
scope of this paper and is thoroughly elaborated in [24, 25]. However, for a general PM, the first-order
kinematic relation can be formulated as follows:

ρ̇ρρ = Kt, (4)

where K is called the inverse Jacobian matrix. The above, when applied to the case of the 3-RPR PM, results
in:

K =

n1x n1y

(
Rb′1×n1

)
.k

n2x n2y

(
Rb′2×n2

)
.k

n3x n3x

(
Rb′3×n3

)
.k

 , (5)

where k is the unit vector along the z-axis [23].

3. KINEMATIC PERFORMANCE INDICES

The main aim of performance indices is to propose a design, upon which, a well-conditioned workspace,
in terms of kinematic properties, can be obtained. Jacobian matrix can be used to determine a linear map-
ping between the errors in the joint space and the Cartesian space of the moving platform. This point has a
great significance in calculating the performance indices, which is substantial in the field of optimal design
of PMs. In what follows, some of these kinetostatic performance indices are to be reviewed.
As the first case, the manipulability performance index, µ , is considered, which can be expressed mathe-
matically as follows:

t = Kρ̇ρρ, µ = 1/
√

det
(
JJT ), (6)

where J is the forward Jacobian matrix [11]. The value returned by this index is proportional to the volume
of the manipulability ellipsoid.
Moreover, another popular index, the condition number, κ , is defined as:

κ = ‖K‖‖K−1‖, (7)

which indicates the ratio of the error amplification from the joint space to the Cartesian space of the moving
platform [13]. In fact, by considering the 2-norm, the value returned by this index is proportional to the ratio
of the large diameter to the small one of the manipulability ellipsoid.
Having in mind the fact that the Jacobian matrix for a general PM is dimensionally non-homogeneous, the
two performance indices defined above, may lead to erroneous interpretations about the performance of
PMs, since changing the scale of components and variables in Jacobian matrix can change the final result
significantly.
In order to overcome the latter problem, two separate indices for the translation and rotation parts of the
Jacobian matrix have been recently proposed in [5], referred to as point-displacement and rotational kine-
matic sensitivity, respectively. These two indices can be physically interpreted as upper-bound limits for
translational and rotational errors, respectively, which can formulated as follows:

σpc, f = max
‖θ̇θθ‖c=1

‖p‖ f , σrc, f = max
‖θ̇θθ‖c=1

‖φ‖ f , (8)
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where σpc, f and σrc, f are the point-displacement and rotational kinematic sensitivity, respectively. In ad-
dition, c and f are the norm of the joint rate vector and the norm of the moving platform pose vector,
respectively.
As pointed out previously, these two indices consider the translational and rotational errors, separately and
therefore are unit-consistent. Two types of norms which are most relevantly used for c and f , are 2 and ∞.
Therefore, four different combinations of the latter norms are possible for calculating the kinematic sensitiv-
ity, where all of them are mentioned and compared in [22] and finally it has been concluded that c = ∞ and
f = 2 bears the most meaningful and physically applicable conception about the performance of the PMs.
The most of well-known kinematic performance indices are classified as posture-dependent indices in [18,
28]. By the way, comparison and optimization of PMs which are based on this kind of indices may lead to
erroneous conclusions. Thus, a global index is required, which returns a value describing the kinetostatic
efficiency of a PM, with regard to the whole feasible singularity-free workspace. In the case of kinematic
sensitivity, an index, called global kinematic sensitivity is suggested in [29, 30], where it follows that:

ζl =

∫
W

ldW∫
W

dW
=⇒ ζσp∞,2

=

∫
W

σp∞,2dW∫
W

dW
, ζσr∞,2

=

∫
W

σr∞,2dW∫
W

dW
. (9)

The above formulation is used for the purpose of this paper. It should be noted that in the above dW is a
differential element of the workspace.

4. CREDIBILITY ANALYSIS AND COMPARISON OF KINEMATIC SENSITIVITY INDICES

The kinematic performance indices are presumed to return values which correspond to the practical real-
ity. As a consequence, PMs designed and optimized in virtue of these indices as objective criteria, leads to
possibly one of the best decisions about the architecture properties.
It is worth noticing that the performance index can be a proportional representative of the actual error oc-
curred in the workspace of the PM under study. Assume I1 as a valid index, representing the PM workspace
error, as depicted in Fig. 2. Considering the arbitrary constant α1, and then assuming I2 = α1I1 as another
index, one has:

ζI2 = α1ζI1 , (10)

where ζI1 and ζI2 are the global indices for I1 and I2, respectively, defined by the manner illustrated in Eq. (9).
Thus, comparing two PMs on the basis of the new index I2, leads to the same inference.

Also the performance index can be either higher or lower than the actual index, with a constant offset.
More precisely, consider another arbitrary constant, named α2, and assume I3 = I1 +α2 as another index, as
represented in Fig. 2. According to Eq. (9), one has:

ζI3 = ζI1 +α2, (11)

where ζI3 is the global index for I3, defined by the manner illustrated in Eq. (9). Thus, comparing two PMs
on the basis of the new index I3, also results in the same overall interpretation.

4.1. Performance Criteria
In what follows, two kinematic criteria are investigated, which are applicable to all PMs and no particular

PM is considered from the outset.
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Fig. 2. The valid index, I1 (-), and the imaginary indices, I2 (-.-), I3 (–) and I4 (.).

Point⇒
P1 P2 P3Error criterion⇓

Real error 0.2 0.3 0.8
Index I1 5 4 9
Index I2 200 310 2000

Table 1. The error of a PM in three particular points, P1, P2 and P3, considering the calculated errors and two indices
I1 and I2.

4.1.1. The First Criterion
A suitable index should save the order of the extent of the error of the points in which it is measured.

More precisely, it should return a higher value, when the error is increased in a point and vice versa. For
instance, the error of a PM in three particular points, P1, P2 and P3, considering the calculated error and
two imaginary indices I1 and I2 are indicated in Table 1. Having in mind that the calculated error takes its
highest value in point P3 and the lowest one in point P1, it is clear that index I2 saves the order of the errors,
despite index I1, which does not follow this lead. The foregoing degeneration has a negative impact. This
issue causes the curve representing the value returned by index I4 to be delayed from the one returned by
index I1. It is apparent from Fig. 2 that the two curves do not correspond exactly to each other.

4.1.2. The Second Criterion
As a matter of fact, an applicable index should exhibit conforming reactions according to the scale of

variations of the calculated error. For example, in Table 1, index I2 is not following this rule. Even though it
saves the order of the errors, but it does not provide mutations proportional to the real variations of the error
in the corresponding points. Therefore, it cannot convey a meaningful representation of the efficiency of the
PMs.
Moreover, as it can be observed from Fig. 3, this inadequacy results in a distortion in Fig. 3. This figure
depicts an imaginary index and the calculated Cartesian workspace error of each of two imaginary PMs in
three positions. For the first PM, points a1, b1 and c1 are selected, for which the calculated errors are 0.7,
1 and 0.7, respectively and the prediction of the index about these values are 0.6, 1.5 and 0.6, respectively.
For the second one, points a2, b2 and c2 are selected, for which the calculated errors are 0.95, 1 and 0.1,
respectively and the prediction of the index about these values are 0.01, 1.5 and 1.4, respectively. As it can
be deduced, this index takes into account the scale of the changes of the errors.
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Fig. 3. The imaginary index (the dotted curve) and the calculated workspace error (the solid curve) in three positions
a1, b1 and c1 for the first PM and in three positions a2, b2 and c2 for the second one.
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Fig. 4. Comparison of point-displacement kinematic sensitivity indices.

Usually, global error and global performance indices are considered for the sake of comparing PMs. In the
above example, the global error for the first and the second PM is 2.4 and 2.05, respectively, which denotes
the domination of the second one. By the way, the global index, predicts the values 2.7 and 2.91 for the
PMs, respectively. Thus the index is deciding that the first PM performs better than the second one, which
does not correspond to the reality. This point shows the significance importance of the criterion discussed
in this section.

4.2. The Performance Indices of the 3-RPR PM
In order to investigate the performance indices, the possible errors in the joint space and the Cartesian

space of the 3-RPR PM are simulated. To this end, some points are selected from the workspace and then
the error is simulated using the kinematic and geometric relations introduced in the previous sections. To
this end, generated errors are calculated in points lying on the perimeter of the circle as indicated in Fig. 1,
considering a finite error in the joint space. Then, according to Eqs. (10) and (11), the indices are calculated
and depicted in Figs. 4, 5 and 6. In what follows, the calculated workspace error is compared with the values
returned by the other performance indices, by skipping the mathematical details.

For the sake of numerical example and better representation, consider φ = π/8.9 which arises the most
possible distance between the picks of the translational and rotational error curves, i.e., the most possible
difference between the values of these indices.
In addition to the angle of rotation, the ratio of the size of the moving platform with respect to the size of
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Fig. 5. Comparison of rotational kinematic sensitivity indices.
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Fig. 6. Comparison of the calculated workspace error with the other performance indices.

the fixed frame, is another factor that causes the delay between the translational and rotational error curves.
According to Fig. 1, consider a circle with an origin coinciding with the center of the triangle A1A2A3 as the
trajectory that the moving platform performs.
For simulating the joint space error, first the IKP is solved for the points lying on the above circle and the
length of the actuated joints is obtained. Then, a random finite value is added to the above lengths as the joint
space error. Subsequently, by resorting to a numerical approach the FKP is solved, and, as consequence, the
pose of the moving platform is calculated. Finally, subtracting the obtained pose from the original pose of
the moving platform, gives the workspace error. This action is repeated for each point lying on the perimeter
of the prescribed circle represented in Fig. 1, and, finally, the global Cartesian workspace error of the PM is
determined.
According to the facts that the PM is symmetric and the trajectory is circular, periodic error curve are
expected with three equal periods. Thus, interpretation and comparison of the results will be more straight-
forward in the next steps.

5. RESULTS AND DISCUSSION

Among the components of the workspace error, two components concern point-displacement uncertain-
ties, while the other component denotes for rotational error. It is obvious that these components are not
unit-consistent and thus using the 2-norm for obtaining a single error is not reasonable.
In what follows, the error and the other indices are to be depicted and discussed. By the way, the indices
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are not unit-consistent and thus, cannot be compared with each other. To circumvent the latter problem,
Eqs. (10) and (11) are used to adjust the scales and the offsets, respectively, for the curves of the error and
the indices, which leads to bounding them within a reasonable consistent range. Subsequently, the resulted
curves are depicted in Figs. 4, 5 and 6. In Fig. 4, the translational error, ep, the maximum point-displacement
kinematic sensitivity index, Ikp, the manipulability index, Im, and also the condition number index using the
2-norm, Ic, are depicted. In addition, in Fig. 5, the rotational error, er, the maximum rotational kinematic
sensitivity index, Ikr, the manipulability index, Im, and also the condition number index using the 2-norm,
Ic, are illustrated.
In Fig. 4, the exact coincidence of the translational error curve with the maximum point-displacement kine-
matic sensitivity index curve is apparent. This fact indicates the validity of the point-displacement kinematic
sensitivity index, regarding each of the criteria, mentioned before. In Fig. 5, the approximate coincidence
of the maximum rotational kinematic sensitivity index curve with the one for the rotational error, indicates
its validity, regarding the first criterion, in spite of the other indices, whose curves show significant delays
from the calculated error curve. However, the second criterion is not perfectly followed by this index, in
the strictest mathematical viewpoint, and this is the cause of the little deviation of the maximum rotational
kinematic sensitivity index curve from the one for the rotational error.
Albeit, according to unit-inconsistency of the translational and rotational errors, they cannot be actually
compared, ignoring this fact and trusting this comparison, Fig. 6 admits that the manipulability and condi-
tion number indices are not able to authentically predict the total error, et .

6. CONCLUSION

This paper investigated the validity of some performance indices, such as manipulability, the condition
number and the maximum point-displacement and rotational kinematic sensitivity, and also their correspon-
dence to the reality. In fact, these indices are developed on the basis of the fact that the performance indices
should react reasonably and correctly, with respect to the variations of the calculated workspace of the par-
allel mechanisms. Then, the validity of these indices was surveyed and compared, by applying them to the
3-RPR planar parallel mechanism as case study. For this purpose, first a random finite error was considered
in the joint space of the mechanism and the resulting error in the workspace of the mechanism was calcu-
lated. Moreover, the results of the indices were obtained and compared with calculated errors. The results
revealed that the maximum point-displacement and maximum rotational kinematic sensitivity indices are
more meaningful for the purpose of predicting the errors in the workspace of the mechanism, than the other
indices, such as manipulability and the condition number. Ongoing works include extending the provided
study to the all kinds of errors, being applied to the all possible trajectories of a general parallel mechanism.
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