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ABSTRACT
This paper presents the extended kinematic model of the 3-RPS spatial parallel manipulator. Starting

from the accepted idealized model, a set of error parameters are introduced to accommodate all significant
sources of disparity between the math model and actual kinematics of a real manipulator. This error set is
incorporated into the vector loop equations locating the spherical joints at the end effector. As a result, the
numerical solutions can then presented for both the extended forward and inverse displacement problems.
The paper concludes with a parametric study on the effects of each error component on representative
manipulator geometry in the presence of errors as well as without.

Keywords: 3-RPS; parallel manipulator; kinematics; extended model.

MODÈLE CINÉMATIQUE COMPLET DU MANIPULATEUR PARALLÈLE SPATIALE DE
TYPE 3-RPS

RÉSUMÉ
Cet article présente le modèle cinématique complet du manipulateur parallèle spatial de type 3-RPS . A

partir du modèle idéalisé, un ensemble de paramètres d’erreur est introduit pour tenir compte de toutes les
sources importantes de disparité entre le modèle mathématique et les déplacements réel cinématique d’un
manipulateur réel. Ces erreurs sont alors intégrées dans les équations de vecteur de boucle de positionnement
des articulations sphériques à la nacelle. Et c’est ainsi que les solutions numériques sont ensuite présentées
pour le problème géométrique direct et le problèmes géométrique inverse. Le document se termine par une
étude paramétrique sur les effets de chaque composante d’erreur de manipulation de la géométrie représen-
tant en présence d’erreurs aussi bien que sans.

Mots-clés : 3-RPS ; manipulateur parallèle ; modèle cinématique complet.
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NOMENCLATURE

Base variables
{O′} Mobile platform frame with origin at O′

Ai Centre of spherical joint (mobile platform)
ai Vector describing origin of {O} to Ai (base link frame)
a′i Vector describing origin of {O′} to Ai (mobile platform frame)
rp Nominal radius containing all Ai (mobile platform frame)
{O} Base link frame with origin at O
p Vector describing origin of {O} to origin of {O′} (base link frame)
Bi Revolute/Prismatic joint intersection point location (base link)
bi Vector describing origin of {O} to Bi (base link frame)
rb Nominal radius containing all Bi (base link frame)
βi Angle between branches
λi Revolute joint variable
qi Prismatic joint variable

Extended model specific variables
rpi Branch specific radial distance to Ai (mobile platform frame)
rbi Branch specific radial distance to Bi (base link frame)
αi Angle between branches (mobile platform frame)
ζi Error angle defining amount revolute joint axis out of X-Y plane
κi Error angle defining amount revolute joint axis out of perpendicularity with bi
γi Error angle defining amount prismatic joint axis out of perpendicularity with revolute joint axis
δqi Prismatic joint offset

Parameter variation specific definitions
δ rpi Branch specific error distance defining deviation from nominal radius rp
δ rbi Branch specific error distance defining deviation from nominal radius rb
δαi Branch specific error angle defining deviation from nominal branch angle αi
δβi Branch specific error angle defining deviation from nominal branch angle βi

1. INTRODUCTION

Following the debut of the Stewart-Gough platform [1], the field of Parallel Manipulators (PM) has been
a topic of much interest covering a wide variety of configurations and applications. Compared to their serial
counterparts, PM’s are typically found in low inertia configurations with relatively high load capacity and
stiffness. These benefits are not without penalty however and PMs are also typically characterised by lim-
ited workspaces and poor dexterity. Despite these shortcomings and working off their strengths, PMs have
excelled in a number of industries and applications, including vehicle simulation [2], precision machining
centres [3, 4] and haptic interfaces [5] to name just a few.

The particular configuration discussed herein is referred to as the 3-RPS spatial PM first introduced by
Hunt [6]. The configuration description given by 3-RPS indicates that, from the base to the end-effector,
each of the manipulator’s three branches contains 1 Revolute (passive) joint, 1 Prismatic (actuated) joint and
one Spherical (passive) joint. Following its introduction, this PM has been an area of active research with
topics ranging from Jacobian/singularity analysis [7, 8], kinematics/dynamics synthesis [9, 10], workspace
optimization and manipulator design [11, 12], as well as integration into larger robotic configurations [13].

While the first kinematic analysis of this PM was completed by Shah and Lee [14], the kinematic displace-
ment problems made use of many assumptions regarding component alignment and assembly conditions to
idealize the manipulator. Since this time, almost all research relating to this PM has made use of some
variation of this idealized model. While some researchers have taken steps to improve upon this [15], the
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work falls short in capturing all significant error components and is the primary motivation for the current
research; to extend this model and more accurately represent the kinematics of the 3-RPS.

To begin, the approximate kinematic model is developed using conventional methods along with both
its forward and inverse displacement solutions. This is followed by a brief discussion on the number of
architectural parameters required to build a comprehensive kinematic model for PMs and application of this
theory to the 3-RPS. The paper concludes with a parametric study on the effects of each error component on
representative manipulator geometry in the presence of errors as well as without.

2. THE 3-RPS MANIPULATOR

2.1. Description
The 3-RPS spatial parallel manipulator comprises 3 identically configured branches connecting a base

platform to a mobile platform. Each branch has 5 Degrees Of Freedom (DOF) containing 1 revolute joint,
1 prismatic joint and 1 spherical joint. For purposes of this research, both the revolute and spherical joints
are defined as passive and without orientation feedback, while the connecting prismatic joint is defined
active and assumed to have position data available. Based on this architecture and according to Chebychev-
Grübler-Kutzbach (CGK) mobility formula, the resulting DOFs for the mechanism are:

F = 6(n− j−1)+
j

∑
i=1

fi = 6(8−9−1)+3(1+1+3) = 3

where n is the number of bodies in the mechanism, j is the number of joints and fi is the number of DOFs as-
sociated with joint i. An implication of this result is that, while this manipulator is a spatial mechanism, only
3 of the 6 task-space variables are available as independent DOFs leaving the remaining 3 to be determined
as functions of the user-selected independent variables.

The architectural parameters of the ideal kinematic model are shown schematically in Fig. 1 and reflect
the variable set used during the forward and inverse displacement solutions for the ideal model.

2.2. Ideal (Approximate) Kinematic Model
In this ideal model, all three branches are considered identical. The points of intersection of the revolute

joint axes and the line of action of the prismatic joints (Bi) form the points of an equilateral triangle, all
residing on a circle of radius rb whose centre is O. The revolute joint axes are all assumed to be at-once
tangent to this circle and co-planar to the X-Y plane. The angles between branches 1 and 2 and branches 1
and 3 are denoted as β2 and β3 respectively with branch 1 aligned to the X-axis of {O}, thus β1 = 0. It is then
assumed that the corresponding branch angles of the mobile platform’s spherical joints are also arranged in
this fashion (i.e., αi = βi) with joint centres Ai at radius rp. As well, the line of action of the prismatic joint
is assumed to be perpendicular to its respective revolute joint axis which as a result, restricts each spherical
joint centre Ai to a plane perpendicular to the X-Y plane of {O}.

Remaining definitions from the vector model overlay of Fig. 1 show vector p describing a line connecting
O to O′ with the vectors ai and a′i describing lines passing through O, Ai and O′, Ai, respectively. Finally, the
vectors bi define the set of lines passing through O and Bi.

2.2.1. Inverse Displacement Solution (IDS)
The purpose of the 3-RPS IDS is to determine the prismatic joint lengths required to achieve a desired

pose of the mobile platform. Conveniently, the IDS for the 3-RPS is identical to that of the 3-PRS developed
in [11], making use of all the same assumptions detailed in section 2.2.

While the choice of which 3 task-space variables to select as independent is arbitrary, the variables used
in [11] and [16] and most other papers dealing with the 3-PRS or 3-RPS manipulators will suffice for demon-

CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium, 2013 3



Fig. 1. Architectural parameters of the ideal 3-RPS kinematic model.

stration purposes, namely: displacement along the inertial Z, and the tip and tilt angles of the mobile platform
(rotations ψ and θ about the inertial X and Y axes respectively). As a result, this leaves displacements of
the mobile platform in X and Y (often termed as parasitic), as well as rotation about Z (i.e., φ ) as dependent
variables.

As shown below and detailed in [11], calculation of these dependent variables makes use of the vector
loop equations depicted in Fig. 1 and many of the assumptions detailed in the ideal model description.

Given the following Euler angle rotation matrices:

Rx(θ)=

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 , Ry(θ)=

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 , Rz(θ)=

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


and a coordinate system transformation sequence of:

T = TZXY = Ry(θ)Rx(ψ)Rz(φ)

=

 cθ cφ + sψsθ sφ −cθ sφ + sψsθ cφ cψsθ

cψsφ cψcφ −sψ

−sθ cφ + sψcθ sφ sθ sφ + sψcθ cφ cψcθ

 (1)

The location of the spherical joints, Ai, can be defined as (constant) components in the mobile frame as:

a′1 =
[
a′1x,a

′
1y,a

′
1z
]T

= [rp,0,0]
T

a′2 =
[
a′2x,a

′
2y,a

′
2z
]T

=
[
rpcβ2 ,rpsβ2 ,0

]T (2)

a′3 =
[
a′3x,a

′
3y,a

′
3z
]T

=
[
rpcβ3 ,rpsβ3 ,0

]T
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and as ai = p+Ta′i in the fixed frame, with individual expressions defined as follows:

aix = x+T11a′ix +T12a′iy +T13a′iz
aiy = y+T21a′ix +T22a′iy +T23a′iz (3)

aiz = z+T31a′ix +T32a′iy +T33a′iz

Using the assumptions listed previously and the above vector loop equations, a closed form linear solution
is possible from a set of 3 constraint equations (composed of both the known and unknown task-space
variables):

a1y = y+T21rp = 0

a2y = a2x tan(β2) (4)

a3y = a3x tan(β3)

which when substituting components from equations (1–3), can be solved for the unknown task-space vari-
ables directly, the result of which describes the full pose of the mobile platform in Cartesian Space. For
completeness, the equation set is included here:

φ = tan−1

 −((cβ 2− cβ 3)(cθ − cψ)+(sβ 2− sβ 3)sθ sψ)

(cβ 2− cβ 3)sθ sψ − (sβ 2− sβ 3)cθ +
(

cβ 3−1
tβ 3
− cβ 2−1

tβ 2

)
cψ


x = −rp(cθ cφ + sψsθ sφ )cβ 2− rp(−cθ sφ + sψsθ cφ )sβ 2

+
rp

tβ 2
(cψsφ (cβ 2−1)+ cψcφ sβ 2)

y = −cψsφ rp.

2.2.2. Forward Displacement Solution (FDS)
Conversely to the IDS, the purpose of the 3-RPS FDS is to determine the pose of the mobile platform

from a given set of prismatic joint positions. Again, as was the case for the ideal IDS, the ideal 3-RPS FDS
is identical to the 3-PRS developed in [20], also making use of the assumptions listed in Section 2.2.1.

In this case, since the intersection point of the revolute joint axes and the prismatic joint lines of action
(i.e., Bi) are known and the prismatic joint lengths (i.e., qi for i=1,2,3) are provided as input, the spherical
joints (Ai) must lie on a circle of radius qi centred on Bi. Using this information and the vector loop equation
(qi = ai−bi), the square of length of the i-th leg can be expressed as:

qi
2 = (aix−bix)

2 +(aiy−biy)
2 +(aiz−biz)

2

The result is a set of 3 non-linear functions composed of known manipulator geometry, 3 unknown inde-
pendent task-space variables and 3 dependent task-space variables. While it should be noted that Tsai et al.
show that an analytical solution is possible for the FDS [17], it is known to result in 16 different solutions
for this manipulator with identification of the desired solution providing its own challenges. Instead, as was
the case for [16], a numerical approach using the Levenberg-Marquardt (L-M) algorithm was used by first
estimating the three independent task-space variables (based on the provided prismatic joint positions), and
then completing a local search to obtain the full pose of the mobile platform directly.

2.3. Extended Kinematic Model
As detailed in Section 2.2.1, a number of assumptions were required to solve both the inverse and forward

displacement problems of the 3-RPS with the methods described in their respective sections. However, these
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Fig. 2. Extended kinematic model error angles.

assumptions are not necessarily valid and only partially reflective of the actual manipulator kinematics at
best. Nor are these assumptions required to obtain solutions to these problems, they simply need to be
replaced with variables describing the particular ideal model deviation and included in the very same vector
additions used previously, namely qi = ai−bi.

To begin, the angles βi at the base and mobile platform frame need not be the same. To address this
assumption, an independent angle set is introduced describing the spherical joint locations in {O′}, αi. The
next assumption to be addressed is that all points B1, B2 and B3 lie on a circle of radius rb centred on the
base link frame. While it is convenient to affix {O} to this circle centre and align the X-axis to contain B1,
due to machining/assembly errors, the circle is unlikely to also contain the remaining intersection points
with nominal radius rb. To correct for this, each point Bi will be located at its own respective radial position,
namely rbi, relative to O. Similarly, for the mobile platform and the spherical joint locations, Ai, to be located
at their respective radial positions, rpi.

Further, it is assumed that the fixed base revolute joint axes are simultaneously perpendicular to bi and
co-planar to the base link frame X-Y plane, both of which are highly unlikely for even the most well made of
mechanisms. Realistically, achievable machining and assembly tolerances preclude this assumed perfection
and to reflect this, two angles for each branch are introduced to capture these misalignments. As shown
in Fig. 2, for a local coordinate system {Vi} located at Bi, the first rotation ζi represents a rotation of this
coordinate system about an axis parallel to bi, allowing for the revolute joint to be skewed with respect to
the base link X-Y plane (this includes a π/2 rotation to align the frame’s Z-axis with the revolute joint axis).
The second rotation, κi, represents a rotation about the frame’s Y-axis (i.e., Viy), removing the requirement
for the revolute joint axis to be perpendicular to bi.

As well and for the same reasons described above, the assumption that the line of action of the pris-
matic joint is perpendicular to the revolute joint axis is also highly unlikely. For this angle γi is introduced
describing a rotation about the rotated Y-axis (Viy).

Finally, as was the case in [16] and demonstrated in [18], the errors associated with imperfect spherical
joints are regarded as negligible relative to other joint errors and continue to be assumed ideal for this
extended kinematic model. Based on these assumptions, the number of independent kinematic parameters
total 34 and are summarized in Table 1. Note that, while it is possible to reduce the parameter set further by
co-locating {O} at B1, rb1 is included for clarity and ease of implementation.

CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium, 2013 6



Branch 1 rb1 rp1 ζ1 κ1 γ1 δq1

Branch 2 rb2 rp2 ζ2 κ2 γ2 δq2 α2 β2

Branch 3 rb3 rp3 ζ3 κ3 γ3 δq3 α3 β3

External Measurement - Fixed Base XB YB ZB ψB θB φB

External Measurement - Platform XP YP ZP ψP θP φP

Table 1. Summary of kinematic parameters in the extended model.

From [19], it is shown that the minimum number of kinematic parameters required to completely define
a parallel manipulator can be obtained by:

NT = 3R+P+2C+SI +E +6L+6(F−1)

where R the total number of revolute joints, P is the total number of prismatic joints, C is the total number of
cylindrical joints, SI is the total number of ’singular’ links (e.g., SS link), E is the total number of encoders
(or other joint sensor), L is the number of independent kinematic loops and F is the number of arbitrary
reference frames. For the 3-RPS, this equation results in:

NT = 3(3)+3+2(0)+(0)+3+6(2)+6(2−1) = 33. (5)

2.3.1. Augmented Constraint Equations
As was the case for the ideal model, the basis for the constraint equations used in both the extended IDS

and FDS are the same vector loops depicted earlier in Fig. 1. While equation (3) is written in its general
form and still applies, equation (2) requires an update to include the expanded parameter set as follows:

a′i =

rpicos(αi)
rpisin(αi)

0


Additional vector definitions required include bi and q′i describing the location of Bi (in {O}) and the

location of Ai (in {Vi}) respectively:

bi =

rbicos(βi)
rbisin(βi)

0

 q′i =

0
0
qi


which, when rotated to the base link frame, define two separate vector loops describing the locations of each
branch’s respective spherical joint, Ai, as follows:

ai = bi +Rz(βi)Rx(π/2+ζi)Ry(κi)Rz(λi)Ry(π/2+ γi)q′i
ai = p+Ry(θ)Rx(ψ)Rz(φ)a′i

Subtracting the two equations results in a set of 9 non-linear equations (3 for each branch) which are
functions of known manipulator geometry, 3 specified input parameters and 9 unknowns. Exactly which
variables are specified and which are unknown depend on whether the IDS or FDS will be employed.

2.3.2. Extended Model IDS
In the case of the extended IDS, input to the problem would be three of the six task space variables,

for example [z,ψ,θ ], leaving [x,y,φ ,q1,q2,q3,λ1,λ2,λ3] as unknowns in that case. Once the inputs and
unknowns have been defined, the equations are then solved numerically using a multi-variable local search
algorithm (Levenberg-Marquardt with exact Jacobian). This results in a description of the full pose of the
mobile platform.
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2.3.3. Extended Model FDS
Conversely for the extended FDS, input to the problem would be the set of prismatic joint positions

[q1,q2,q3], leaving [x,y,z,ψ,θ ,φ ,λ1,λ2,λ3] as problem unknowns. As was the case for the IDS, again the
FDS is solved numerically using the same L-M algorithm to arrive at the full pose of the mobile platform,
thereby completing the FDS.

3. PARAMETRIC STUDY AND DISCUSSION

So as to better understand the significance of the various model errors and their effect on overall deviation
between the extended model and the ideal model, a parametric study was performed systematically varying
each of the available error parameters and comparing the sum L-2 norms of the displaced spherical joints. For
demonstration purposes, error parameter effects were evaluated in two different manipulator configurations:
1) a neutral position with all prismatic joint positions equal, all error parameters zero except the parameter
under test and 2) a tipped/tilted orientation with an imposed random small error set applied (but consistent
throughout test) at each branch, all branch lengths different.

As well, tests were performed to evaluate the performance of the L-M local search algorithm. In these
tests, the results of the L-M algorithm were compared to the exact analytical solution of the ideal model
(with all error parameters zero) as well as an assessment of how well a particular input to the extended
model IDS (for example [z,ψ,θ ]) can be returned via the extended model FDS using the extended model
IDS output.

For test purposes the fixed and mobile platforms used in the simulations were 2 m and 1 m in diameter
respectively. Also note that, in order to demonstrate the effect of each error parameter, some variables were
expanded to include a nominal component and an error component as follows:

rbi = rb +δ rbi (6)

rpi = rp +δ rpi (7)

αi = αi +δαi (8)

βi = βi +δβi (9)

3.1. Levenberg-Marquardt Local Search
To assess how well the L-M algorithm performs as compared to the analytical solution in comparative

configurations (i.e., all error parameters zero), 1000 random inputs to both the extended and ideal IDS were
processed and compared. As shown in Fig. 3(a), the mean error was 2.21× 10−9 m with a min/max and
range of 1.65×10−10 / 1.32×10−8 m and 1.31×10−8 m respectively. Since the solution of the ideal model
IDS is exact, this result represents the limit of the L-M algorithm accuracy for the given optimization loop
termination criteria (2.2×10−16 m).

A second test to compare the algorithm’s ability to return a given input after being processed via the
complementary solution was also evaluated. To accomplish this, 1000 sets of random (i.e., [z,ψ,θ ]) inputs
were sent to the extended model IDS, upon which the output was subsequently sent to the extended model
FDS as input to arrive back at the original [z,ψ,θ ] inputs. In this case, as expected given back-to-back
numerical solutions, both the mean error (6.06× 10−9 m) and range (1.22× 10−7 m) were higher when
compared to the above results. See Fig. 3(b) for details.

3.2. Test Case 1: All prismatic joint positions equal, error parameters zero.
The first of the manipulator configurations analysed was as shown in Fig. 1 with all prismatic joints

equal (1.956 m), all error parameters equal to zero and all joints separated by 120◦. From there, each error
parameter was varied through a range of ±2.5◦ for angles and ±1.3 mm for displacements to assess their
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Fig. 3. Norm of spherical joint location error: (a) Extended vs. Ideal IDS, (b) IDS input vs. FDS output.
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Fig. 4. Case 1 (no errors): Branch 3 parameter variation results.

effect on spherical joint location error as compared to the ideal solution. From the overlaid plots in Fig. 4,
error parameters γi and ζi induce the most significant deviation from the ideal model , however errors related
to κi, δβi and δαi also appear significant for the scale of the manipulator. Note that in the absence of any
other error angles, effects from γi, ζi and κi, δβi are indistinguishable from each other, and why their plots
appear as identical in this configuration. Also note that as the error angles approach zero, the extended model
approaches the ideal model its being compared to and results in the sharp drop in spherical joint location
error seen near the origin of the plot. For brevity, only the results from Branch 3 are shown, however identical
results were obtained for the remaining two branches.

3.3. Test Case 2: Tipped/Tilted configuration with a full set of random error angles.
The second manipulator configuration analysed was as shown in Fig. 5a with each prismatic joint at a

unique position (1.778 m, 2.159 m, and 1.956 m), all joints were separated by 120◦ and with a random set of
error parameters applied as specified in Fig. 5b. From there, each error parameter was varied through a range
of ±2.5◦ for angles and ±1.3 mm for displacements to assess their effect on spherical joint location error as
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ζ κ γ δα δβ δ rp δ rb
Branch 1 -1.97 -1.49 -1.58 N/A N/A N/A N/A
Branch 2 1.37 -1.05 1.00 1.29 0.78 0.9 -1.2
Branch 3 1.06 -0.6 1.68 1.47 0.86 -0.6 -0.9

(a) (b)

Fig. 5. Case 2: (a) Manipulator configuration and (b) Error angle/distance set for parameter variation testing (angles =
degs, distance = mm).

compared to the ideal solution. From the overlaid plots in Figures 6 (a), (b) and (c) , again error angles γi and
ζi typically induce the most significant deviations from the ideal model, however errors related to κi and δβi)
continue to be significant for the scale of the manipulator. Another important conclusion arising from these
plots is that decreasing any particular error parameter does not necessarily improve the overall spherical joint
location error. For all the configurations tested so-far, whether or not increasing /decreasing any particular
error parameter improves/worsens the overall spherical joint location error has been dependent on the entire
set of parameters.

4. CONCLUSIONS

The 3-RPS spatial parallel manipulator was introduced and subsequently analysed to develop both the
ideal and extended kinematic models. As part of this process, the ideal model inverse displacement and
forward displacement solutions were presented and used as a basis for comparison. Following this, the
extended model inverse and forward displacement solutions were also presented and used as the basis for
detailed parameter variation testing. For these tests, the effect each error angle has on the overall spherical
joint location error was evaluated at each branch for two different manipulator poses. Testing was also
performed on the accuracy of the L-M local search optimization algorithm used to solve the non-linear
equation sets. The metric for assessing overall displacement error was to sum the L-2 Norms of the resulting
spherical joint location displacements as compared to a reference position (which is test dependent).

The first test case analysed had the mobile platform at zero rotational / X-Y axes displacements and a
1.891 m Z displacement from the fixed base link frame. In this configuration, each error parameter was
varied through a range of ±2.5◦ for angles and ±1.3 mm for displacements to demonstrate the effect on
overall spherical joint location error. From the resulting plots it was seen that in this configuration, error
parameters γi and ζi induced the most significant deviation from the ideal model. However, errors related
to κi, δβi and δαi were also shown to be significant for the scale of the manipulator. It was also noted
that in this case, with all other error parameters being zero while not under test, γi, ζi and κi, δβi were
indistinguishable from each other in their effect.

The second test case analysed had the mobile platform rotated/displaced in every axis as compared to test
case 1 with the addition of a complete set of error inputs prior to parameter variation. In this configuration,
again each error parameter was varied through a range of ±2.5◦ for angles and ±1.3 mm for displacements
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Fig. 6. Case 2 (with errors) parameter variation results: (a) Branch 1, (b) Branch 2, (c) Branch 3.

to demonstrate the effect on overall spherical joint location error. From the resulting plots it was seen that
in this configuration, again error angles γi and ζi typically induced the most significant deviations from the
ideal model, however errors related to κi and δβi continued to be significant for the scale of the manipulator.
It was also seen from these tests that decreasing any particular error angle does not necessarily improve the
overall spherical joint location error.

Testing of the L-M algorithm accuracy was also completed to help explain the limits of the employed
techniques. To this end, two tests were completed; 1) evaluating comparable configurations using both the
exact solution and the L-M numerical approach and 2) determining how well the L-M numerical IDS/FDS
solutions can return the original input when evaluated back-to-back (i.e., IDS results fed to FDS input). As
expected, comparison errors to the exact solution are lower than comparison errors to a secondary numerical
process, however, comparison errors in both cases were low and on the order of 10−8 m.
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