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ABSTRACT
This paper aims at surveying the efficiency of different types of planar parallel mechanisms, considering

both kinematic sensitivity and workspace. Two performance indices are considered for the purposes of
this paper, namely, point-displacement and rotational kinematic sensitivity, which are recently proposed
to the end of alleviating the limitations of some notorious indices such as manipulability and dexterity.
The process of refining the design parameters and finally comparing them is possible upon optimization
procedures. Computational algorithms for this purpose are carried out upon the concept of genetic algorithm.
Single-objective optimization is accomplished by resorting to differential evolution algorithm. For multi-
objective optimization, a novel approach, referred to as covector evolution, is introduced, which offers the
most reliable decision, in order to make a settlement between the different contradictory objectives. Finally,
according to the obtained results, the performances of these mechanisms are put into contrast.

Keywords: planar parallel mechanisms; point-displacement and rotational kinematic sensitivity; single-
and multi-objective optimization; differential evolution; covector evolution..

LA CONCEPTION OPTIMALE DES MÉCANISMES PARALLÈLES PLANAIRES EN
FONCTION DE LA SENSIBILITÉ CINÉMATIQUE ET L’ESPACE ATTEIGNABLE

RÉSUMÉ
Cet article étudie l’efficacité des différents types de mécanismes parallèles planaires, considérant à la fois

la sensibilité cinématique et l’espace atteignable. Deux indices de performance sont considérés pour les fins
du présent document, la sensibilité cinématique de translation et de rotation, qui à été récemment proposé à
la fin d’éliminer les limitations de certains indices notoires tels que maniabilité et la dextérité. Le processus
d’affiner les paramètres de conception et enfin les comparer est possible sur des procédures d’optimisations.
Les algorithmes de calcul sont basés sur le concept d’algorithme génétique. Optimisation mono-objectif est
accomplie en ayant recours à l’algorithme d’évolution différentielle. Pour l’optimisation multi-objectif, une
nouvelle approche, appelée covecteur évolution, est introduit, qui offre la décision la plus fiable, afin de faire
un compromis entre différents objectifs contradictoires. Enfin, selon les résultats obtenus, les performances
de ces mécanismes sont comparées.

Mots-clés : mécanismes parallèles planaires ; sensibilité cinématique de translation et de rotation ; optimi-
sation multi-objectifs et mono-objectifs ; évolution différentielle ; évolution covecteuro.
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1. INTRODUCTION

There are various efficiency indices, proposed for evaluation and comparison of Parallel Mechanisms
(PMS) [1–3]. However, most of them entail several drawbacks and as a result, are not very reliable. From
various studies reported in literature, it has been asserted and proved that most of the proposed kinetostatic
performance indices do not indicate the accuracy of PMs properly [4, 5]. For instance, some of them con-
sider input errors and design errors simultaneously, and are not able to distinguish them [6, 7]. In the context
of kinetostatic performance indices [8], the translational and rotational parts of Jacobian matrices are not
unit-consistent. As a result, the performance indices defined on the basis of this matrix do not return a
physically appropriate interpretation. Therefore, defining an overall index for the performance of PMs may
result in fallacious conclusions about their kinetostatic uncertainties. In what follows, the concept of Jaco-
bian matrix is reviewed and some deficiencies of the indices defined on the basis of this non-homogeneous
matrix are broadly mentioned.
The first-order kinematic relation for PMs can be developed by assuming infinitesimal variations in the input
and output vectors. There are two well-known performance indices, namely dexterity [9] and manipulabil-
ity [4, 10], which are defined on the basis of this matrix and consider the translational and rotational parts of
Jacobian matrix simultaneously. As aforementioned, these two parts are unit-inconsistent and thus the Jaco-
bian matrix is a non-homogeneous matrix. As a consequence of normalizing [11, 12] some unit-inconsistent
variables, the performance indices defined by using this reasoning, as well as the characteristic length pro-
posed in [13], are not physically applicable, since changing the scale of geometric properties, could change
the results significantly. This assertion is proved and investigated extensively in [4, 5, 14–16].
To avoid the above inadequacy, kinematic sensitivity has been recently proposed as a unit-consistent index,
where one can relied upon for comparing different PMs according to their kinematic uncertainties and mak-
ing decisions on how dependable and competent they are.
A set of eight Planar Parallel Mechanisms (PPMs), taken from [17], are the subject of the study carried out
in this paper, and by having in mind the reasoning given above, the kinematic sensitivity concept [18, 19] is
applied to them. However, according to the classification proposed in [8, 20], this index is a posture indepen-
dent measure, i.e., an index which analyzes the performance of a robot, for a predefined pose. Meanwhile, a
comparison of PMs, based on a posture-dependent index, may lead to indiscriminate decision on their per-
formance [8, 20]. At the other hand, there are posture-dependent indices, which measure the performance
of the mechanical system in the whole workspace and return a meaningful and convincing value. Among
these indices, the global kinematic sensitivity [21] is selected for the aim of this paper.
The optimization procedure proposed in this paper consists of two steps. First, using a single-objective pro-
cedure, namely Differential Evolution (DE) [22, 23], the process is started. This process aims at optimizing
individually each of the three objectives, the point-displacement kinematic sensitivity, the rotational kine-
matic sensitivity and the workspace. This attitude usually results in inappropriate values, due to the fact that
the algorithm devotes the other objectives to pleasing the objected one at the greatest extent.
The next step in the optimization procedure consists in using a multi-objective technique in order to ap-
proach toward a balanced state for the three conflicting objectives. There are many methods proposed and
implemented in this context, such as the Pareto based approach known as Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) used in [16]. The foregoing method entails some deficiencies, as it necessitates
the use of decision makers as to decide on the best possible solution among others, and do not return a
single definite solution for the multi-objective problem. In fact, this paper follows up the study conducted
in [16] by authors, by considering the aforementioned problems and circumvent them by introducing a new
multi-objective concept, called Covector Evolution Algorithm (CEA), which searches for the best solution
among all the possibilities and suggests a definite point as one of the best one. It should be noted that some
of the relations and concepts, are explained in detail in some publications by authors such as [16, 24], but
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for the sake of quick references they are briefly recalled in this paper. In fact, this method is implemented
and designated to find the optimal design parameters of the eight PPMs under study, by taking into account
point-displacement and rotational kinematic sensitivity, together with the workspace, as the objectives of
the optimization problem.
The remainder of this paper is organized as follows. First, the kinematic analysis of PPMs is briefly re-
viewed upon their geometric properties. The study is pursued by touching upon some fundamental concepts
about applying the above kinematic traits to the kinematic sensitivity index and workspace. The single- and
multi-objective optimization procedures are broadly explained where the inception is relied upon confining
the design parameters to a reasonable practical range. The single-objective procedure, using DE, is applied
to prepare the requisite data for the multi-objective process. Subsequently, the concept behind the proposed
algorithm for the multi-objective optimization procedure, called CEA, is explained and is used to synthesis
the optimal mechanism. Finally, the paper concludes with some discussions on the obtained results about
the comparison of the PPMs under study in this paper.

2. REVIEW ON THE KINEMATIC MODELING AND KINEMATIC SENSITIVITY ANALYSIS
OF PPMS

The mathematical framework for the formulation of the kinematic sensitivity requires a comprehensive
review of the first-order kinematic relations. This point is explained in [25] and results are to be thoroughly
recalled in what follows.

2.1. Kinematic Arrangement of PPMs
According to the study carried out in [17], there are ten different feasible types of PPMs. The latter PPMs

with their corresponding geometrical design parameters are schematically shown in Fig. 1. However, from
the study conducted in [16], it reveals that even an optimized 3-RPP and also an optimized 3-RPP have a
very restricted workspace, which can be practically assumed to be zero and thus these two PPMs are ex-
cluded from the rest of the study.
In Fig. 1, each architecture compromises three kinematically identical limbs. Throughout this paper, pris-

matic and revolute joints are denoted by P and R, respectively. In this notation, the kinematic arrangement
of the joints in each leg is shown by writing the joint symbols, regarding the order from the base to the
end-effector. Furthermore, the actuated joint is underlined.

2.2. Input-Output Velocity Formulation
It is worth mentioning that PMs usually may compromise various working modes. However, trajectory

planning while switching between different working modes, in the most cases, is a demanding task, which
regularly necessitates passing through singular regions. Thus, in this paper, just one working mode, which
to the sense of kinetostatic performance leads to the best-conditioned workspace, is taken into account for
each PPM, in order to obtain its input-output velocity relation, which is briefly introduced in what follows.
As it is fully described in [17], and following the same notation, the input-output velocity equation can be
expressed as follows: ζζζ

◦
1

ζζζ
◦
2

ζζζ
◦
3

vx

vy

ω

=

λ1 0 0
0 λ2 0
0 0 λ3

θ̇ a
1

θ̇ a
2

θ̇ a
3

 , (1)

or in a matrix form:

Zξξξ = ΛΛΛθ̇θθ =⇒Kξξξ = θ̇θθ , (2)
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Fig. 1. 3-DOF PPMs with their corresponding geometric design parameters. The schematic is taken from [16].

where K = ΛΛΛ
−1Z stands for the inverse Jacobian matrix. In the above relation, ζζζ

◦
i is the row vector of the

three-dimensional matrix of wrench, implied by the ith limb. Furthermore, in the above, λi is the moment
of the reciprocal force with respect to the center of the active joint, where the actuator is revolute, or the
projection of the force onto the direction of the actuated translation where the actuator is prismatic [17]. It
should be noted that i is a dummy variable, which is subject to be changed throughout the paper.

2.3. Constant-orientation Workspace
The workspace of PMs is investigated under different perspectives [26]. In this paper, constant-orientation

workspace is considered, which consists in the set of all possible Cartesian coordinates of a given point of
the mobile platform that can be reached for a prescribed orientation [16]. The volume of the workspace can
be calculated numerically using discrete integration, which can be formulated as follows [21]:

W =
∫

π

−π

A(φ)dφ , (3)

where A(φ ) is the area of the constant-orientation workspace.

2.4. Point-Displacement, Rotational Kinematic Sensitivity and Global Performance Indices
From the study conducted in [4], it can be inferred that geometrically, kinematic sensitivity is the max-

imum displacement/rotation of the moving platform under a unit displacement/rotation in the joint space.
As noted previously, for a general PM, the components of the Jacobian matrix are dimensionally non-
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homogeneous and to overcome the latter problem, two different types of kinematic sensitivity are suggested
in [4], which for a PPM can be formulated as follows:

σrc, f = max
‖θ̇θθ‖c=1

‖φ‖ f , σpc, f = max
‖θ̇θθ‖c=1

‖p‖ f , (4)

where σrc, f and σpc, f are the rotational and point-displacement kinematic sensitivity, respectively. Further-
more, c and f are the norm of the constraints function, i.e., error in the joint space, and the norm of the
pose of the moving platform, respectively. In the above, vector p and scalar φ stand for the variation of the
position and orientation of the moving platform, respectively.
Two types of norms, 2- and ∞-norm, are more frequently used in practice since a geometric interpretation
can be associated to them. This fact leads to four possible combinations for formulating the kinematic sen-
sitivity. In addition, from the study reported in [5, 19], it reveals that c = ∞ and f = 2 implicit the most
meaningful and reliable evaluation of the performance of the PMs, and thus are considered for the aim of
this paper.
According to Eqs. (2) and (4), the constraint ‖θ̇θθ‖c ≤ 1 for c = ∞ can be rewritten as follows:

‖Kx‖∞ ≤ 1. (5)

The above can be made equivalent geometrically to a polyhedron spanned by 2n corners [4, 16, 19]. Fur-
thermore, x =

[
x y φ

]T indicates the pose of the moving platform, i.e., the Cartesian space values of the
pose of the end-effector.
The corners of the above mentioned polyhedron can be assumed as the final results of the kinametic sensitiv-
ity problem, which can be described mathematically, through a system of equations, formulated as follows:

L∆x� 12n, L≡
[
KT −KT ]T , (6)

where the sign� indicates that the above inequalities should be solved component-wise. As a matter of fact,
the above mentioned polyhedron is symmetric, with respect to the origin, thus one can solve just 2n

2 of the
above inequalities. In the context of PPMs, there are three DOFs, i.e., n = 3, which implicitly leads to eight
corners, leading to eight inequalities, where only four of them suffice to describe the problem of kinematic
sensitivity, i.e., one has to consider four corners, namely, (xi,yi), i = 1, . . . ,4. Thus, considering c = ∞ and
f = 2 as the norms, the point-displacement kinematic sensitivity, σp∞,2 , and rotational kinematic sensitivity,
σr∞,2 , are mathematically represented as follows [18, 19]:

σp∞,2 = max
i=1,...,4

√
x2

i + y2
i , σr∞,2 = max

i=1,...,4
φi. (7)

Regarding the fact that the above values are certainly nonnegative, they can be bounded to an interval from
zero to one, by the following substitution:

σ
′
p∞,2

=
1

1+σp∞,2

, σ
′
r∞,2

=
1

1+σr∞,2

, (8)

which is fully discussed in [21]. These scalar quantities convey more sensible information about the perfor-
mance of the PMs. Also averaging these values in the whole workspace of the PM gives the global kinematic
sensitivity [21, 27], as follows:

ζσ ′p∞,2
=

∫
W

σ
′
p∞,2

dW∫
W

dW
, ζσ ′r∞,2

=

∫
W

σ
′
r∞,2

dW∫
W

dW
. (9)
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3. SINGLE- AND MULTI-OBJECTIVE OPTIMIZATION ALGORITHMS

An optimization problem necessitates a clear and proper definition of its parameters as well as its objec-
tives. In the case of this paper, the final goal is to lessen the effect of the kinematic uncertainties—which is
equal to reducing the value of the kinematic sensitivity indices—while trying to keeping the workspace of
the mechanism as great as possible. To do so, the problem can be mathematically formulated by maximizing
the three scalar values obtained from Eqs. (3) and (9). Moreover, the required parameters to be varied in
this procedure are the geometrical design parameters of the architectures, which are schematically shown in
Fig. 1.
The eight considered PPMs are assumed to occupy an equal area in the space, so that, they can be fairly
compared. To this end, their three fixed points, attached to the base, are assumed to form an equilateral
triangle and lie on a circle, whose diameter being λa = 1. Furthermore, their design parameters should be
limited to a rational range. More precisely, the stroke of actuators should be assigned within a reasonable
range, which satisfies the requisitions of practical work. In addition, in order to come out with designs of
practical interest, the size of the moving platform should take a reasonable value with respect to the fixed
size of the base circle and all the eight considered PPMs are assumed to be constructed from three symmetric
legs in each case. Therefore, only the design parameters of one leg are considered as the variables of the
optimization procedure.
Generally, an optimization algorithm aims at reaching the best state for one or more of its possible objec-
tives. However, the former usually results in unsatisfactory solutions. More clearly, the single-objective
process attempts to return the best possible value for the considered objective and does not take into account
the other objectives. For instance, in the context of this paper, in the most of cases, optimizing one of the
kinematic sensitivity indices, leads to a very low (even sometimes bounded to only a point) workspace.
Therefore, a multi-objective process is needed to reach one or more points as possibly the most reliable
solutions, which compromise the fairest balancing situation between these inconsistent objectives. To do
so, the results of the single-objective algorithm play an important role, both to have an initial insight into
the possible range of the objected parameters and also to survey the effect of variations of each of these
parameters on the objectives of the problem.
In what follows, the above limitations are intensively reviewed. Subsequently, the concept of the single-
objective procedure and its results are presented upon DE. Moreover, the CEA is elaborated, upon which,
probably the best possible solutions to the optimization problem are obtained as a balancing state between
the conflicting objectives. It should be noted that the insufficiency of the prepared computer algebra systems
had urged the authors to develop necessary software codes, which are adapted for the purpose of this paper.

3.1. Constraints and Ranges of the Design Parameters
As stated previously, before launching the optimization process, the design parameters should be con-

fined within an applicable range, to avoid practically unfeasible solutions. In the following, some of these
constraints and ranges are shortly explained.

3.1.1. Prismatic joints
Regarding the physical limitations on the prismatic joints, they are considered to be able to take values not

higher than a maximum and not lower than a minimum one, i.e., the stroke of the actuators. These physical
constraints can be mathematically represented as follows:

ρmin > 0.1, ρmax < 0.75, ρmax > ρmin, (10)

ρmax−ρmin < ρmin⇒ ρmax < 2ρmin. (11)
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3.1.2. Revolute joints
These joints, regardless of the mechanical interferences, are assumed being able to take any necessary

value.

3.1.3. The size of the end-effector
The three connection points, attached to the moving platform, are assumed to form an equilateral triangle

and lie on a circle, whose diameter being λb and:

0.1 < λb < λa = 1. (12)

3.1.4. Rigid links
Rigid links should satisfy practical constraints, and thus, are confined within the following range:

0.05 < l < 0.5. (13)

3.2. Single-Objective Procedure, DE
The single-objective optimization is based on the concept of DE by following the reasoning proposed

in [21], and the results are shown in Tables 1 and 2, taken from [16]. As mentioned before, these results
bear no physically feasible meaning and are valueless for practical contexts. However, one can gain insight
into the level of importance of the design parameters in affecting the objectives, and provide the required
material for the multi-objective optimization, which will be explained in the next sections.

3.3. Multi-Objective Procedure, Covector Evolution
The multi-objective process, as is understandable from its virtue, should take into account all the three

objectives, i.e., the point-displacement kinematic sensitivity, the rotational kinematic sensitivity and the
workspace. In this paper, a novel approach is introduced, whose characteristics and its search algorithm are
the central subject of this paper and are comprehensively explained in what follows.
The basic information for the multi-objective process is obtained from the results of the single-objective
procedure. As the first step, the set of single-objective optimization results are rearranged as a vector, called
the intermediary covector, as follows:

c =
[
max{ζσ ′p∞,2

} max{ζσ ′r∞,2
} max{W}

]T
. (14)

The so-called intermediary covector, obviously, does not bear any physical or kinematical information, and
should be arranged as a mathematical medium to ensure that the resulted set of solutions saves the proportion
of the objective values and matches them to the original covector, with a little allowed deviation from the
original covector. In fact, the process does not allow any objective to grow in an unreasonable scale and ruin
the result of other objectives.
In this process, as it can be inferred from the nature of the single-objective process, the best desirable results
are the results of the single-objective optimization. The maximum allowed deviation from the intermediary
covector, for the purpose of this paper, is assumed to be 10 percent, and could be different in other contexts,
according to the respective application.
The mathematical formulation for the above reasoning can be provided with a spatial imagination of the
resulting set of values, being assigned in a vector aligned with the intermediary covector, or being deviated
from the covector with a little angle, namely θ . In fact, cosθ represents the percentage of correlation of the
results to the desired values, and thus, in the case of this paper, should be greater than 0.9.
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Objective⇒
Parameter ζσ ′p∞,2

ζσ ′r∞,2
W

Mechanism⇓

3-RPR
λb 0.4801 0.8829 0.9345

ρmin 0.4228 0.2365 0.3716
ρmax 0.5671 0.3791 0.7426

3-RPR
λb 0.7726 0.9999 0.9500

ρmin 0.1503 0.1732 0.3754
ρmax 0.2748 0.1732 0.7499

3-RRR
λb 0.6180 0.7474 0.2867
l1 0.4809 0.2780 0.5000
l2 0.0675 0.0691 0.5000

3-RRR
λb 0.6728 0.7727 0.2871
l1 0.0614 0.0565 0.5000
l2 0.4325 0.2110 0.4999

3-PRR

λb 0.6629 0.8076 0.5064
ρmin 0.4372 0.1822 0.2427
ρmax 0.7130 0.3345 0.4842

l 0.4414 0.2084 0.4376

3-PRR

λb 0.5981 0.6843 0.5036
ρmin 0.3370 0.5010 0.2432
ρmax 0.6117 0.7500 0.4850

l 0.0734 0.0655 0.4386

3-RRP

λb 0.7284 0.7283 0.1369
ρmin 0.3571 0.3571 0.2037
ρmax 0.7142 0.7141 0.4061

l 0.3712 0.3712 0.4453

3-PRP

λb 0.2000 0.1000 0.9784
ρ1min 0.2151 0.2091 0.3746
ρ1max 0.3933 0.4014 0.7478
ρ2min 0.2704 0.2436 0.3351
ρ2max 0.5010 0.4308 0.6693

Table 1. The results of the single-objective optimization procedure for selecting the best design parameters. The table
is taken from [16].

Finally, the cost-function to be maximized for the multi-objective optimization can be defined as follows:

j =
cT
[
ζσ ′p∞,2

ζσ ′r∞,2
W
]T

‖c‖2 ,

s.t cosθ ≥ 0.9,

(15)

which implies that the solution to the multi-objective problem seeks the farthest possible point on the inter-
mediary covector, by taking into account its orientation, i.e., the solution should be oriented in a direction
almost the same as the intermediary covector, unless it deviates from the intermediary covector with a small
negligible angel. The above mentioned process is applied to the all eight PPMs represented in Fig. 1 and
the results are shown in Tables 3 and 4, for the PPMs with prismatic and revolute actuators, respectively. It
should be noted that, in these tables, the parameter S represents the respective length of the resulted vector,
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Objective⇒
Result ζσ ′p∞,2

ζσ ′r∞,2
W

Mechanism⇓

3-RPR
ζσ ′p∞,2

0.4060 0.3411 0.0767
ζσ ′r∞,2

0.1896 0.2984 0.0880
W 0.0015 0.0015 1.2140

3-RPR
ζσ ′p∞,2

0.7639 0.0006 0.0835
ζσ ′r∞,2

0.5198 0.7143 0.2942
W 0.0015 0.0089 1.2199

3-RRR
ζσ ′p∞,2

0.9999 0.9981 0.3351
ζσ ′r∞,2

0.9999 0.9975 0.1061
W 0.0015 0.0015 6.8974

3-RRR
ζσ ′p∞,2

0.9927 0.9855 0.3272
ζσ ′r∞,2

0.9898 0.9980 0.1171
W 0.0015 0.0015 6.8974

3-PRR
ζσ ′p∞,2

0.8856 0.5878 0.1697
ζσ ′r∞,2

0.3190 0.5116 0.1191
W 0.0089 0.0044 0.2739

3-PRR
ζσ ′p∞,2

1.0000 0.9860 0.3659
ζσ ′r∞,2

0.8680 0.9688 0.1447
W 0.0015 0.0015 0.2739

3-RRP
ζσ ′p∞,2

0.7260 0.7260 0.2948
ζσ ′r∞,2

0.5759 0.5759 0.1566
W 0.0030 0.0030 0.1318

3-PRP
ζσ ′p∞,2

0.4797 0.4550 0.3227
ζσ ′r∞,2

0.2626 0.2695 0.1949
W 0.0015 0.0015 0.1125

Table 2. The results of each objective, using the values obtained from Table 1. The table is taken from [16].

with regard to the length of the original covector.

3.3.1. Results and Discussion
The bottom line in analyzing the results of the multi-objective algorithm is that the compared values

should follow the unit-consistency rule. By applying the above reasoning, it is apparent that the point-
displacement kinematic sensitivity of the PPMs with prismatic actuators is unit-less, while the unit of
their rotational kinematic sensitivity is rad

m . In turn, for PPMs with revolute actuators the unit of point-
displacement kinematic sensitivity is m

rad and their rotational kinematic sensitivity is unit-less. This fact
necessitates a task of reclassification of the PPMs into two sets, three with prismatic actuators and the other
five with revolute actuators.

• Mechanisms with prismatic actuators: As it can be inferred from the Table 3, among these mecha-
nisms, the 3-PRR exhibits the best performance according to both point-displacement and rotational
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Result⇒
Parameters ζσ ′p∞,2

ζσ ′r∞,2
W S

Mechanism⇓

3-RPR
λb ρmin ρmax - - 0.0768 0.0900 1.2199 0.9324

0.9540 0.3751 0.7500

3-PRR
λb ρmin ρmax l

- 0.8742 0.3124 0.0074 0.8768
0.6443 0.4223 0.7132 0.3676

3-PRP
λb ρ1min ρ1max ρ2min ρ2max 0.4651 0.2695 0.0015 0.9572

0.1000 0.4720 0.6768 0.1910 0.3766

Table 3. The results of the multi-objective optimization, utilizing covector evolution algorithm for the PPMs with
prismatic actuators.

Result⇒
Parameters ζσ ′p∞,2

ζσ ′r∞,2
W S

Mechanism⇓

3-RPR
λb ρmin ρmax - 0.1480 0.3089 1.1562 0.7505

0.8840 0.3750 0.7498

3-RRR
λb l1 l2 - 0.3361 0.1100 6.9003 0.9813

0.2977 0.5000 0.5000

3-RRR
λb l1 l2 - 0.3334 0.1001 6.8974 0.9810

0.2273 0.4997 0.5000

3-PRR
λb ρmin ρmax l

0.9988 0.9973 0.0015 0.9947
0.6274 0.4705 0.7407 0.0650

3-RRP
λb ρmin ρmax l

0.7183 0.5700 0.0030 0.9796
0.7474 0.3653 0.7219 0.3685

Table 4. The results of the multi-objective optimization, utilizing covector evolution algorithm for the PPMs with
revolute actuators.

kinematic sensitivity. Furthermore, the 3-RPR has the best workspace.

• Mechanisms with revolute actuators: As it can be inferred from the Table 4, among these mecha-
nisms, the 3-PRR exhibits the best performance according to both point-displacement and rotational
kinematic sensitivity. Furthermore, the 3-RRR and 3-RRR have the best workspace.

4. CONCLUSION

This paper surveyed the kinetostatic performance and also the workspace optimization of eight planar
parallel mechanisms. Geometrical design parameters of these architectures were subject to be optimized
with respect to three main goals, including point-displacement kinematic sensitivity, rotational kinematic
sensitivity and workspace. As the first step of the optimization procedure, a single-objective algorithm was
applied, using the concept of an evolutionary algorithm, called differential evolution. This process aimed at
obtaining an initial insight to the effect of variations of each design parameter on each objective, and also
provided the necessary material for the next step, i.e., the multi-objective optimization. Finally, a multi-
objective optimization was introduced, called the covector evolution algorithm. The results of the proposed
formulation for the multi-objective optimization revealed that among mechanisms with prismatic actuators,
the 3-PRR exhibits the best performance, according to both point-displacement and rotational kinematic
sensitivity, and the 3-RPR has the best workspace. However, it was inferred that among mechanisms with
revolute actuators, the 3-PRR exhibits the best performance, according to both point-displacement and rota-

CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium, 2013 10



tional kinematic sensitivity, and the 3-RRR and 3-RRR have the best workspace, a result which was sought
to be obtained at the outset. Furthermore, according to the fact that the optimization procedures have been
implemented considering the kinematic sensitivity as one of the criteria, they have contributed to lessen the
area of the singular regions in the workspace of the planar parallel mechanisms. By the way, the proposed
designs, more or less, suffer from singularities, which excludes the proposed optimization procedures and
resulted sets of design parameters from immediate practical applicability. Therefore, inevitably, the deter-
mination of the largest singularity-free ellipsoid in the workspace of the planar parallel mechanisms and
considering it as the workspace index should be included in the future work.
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