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ABSTRACT
This paper considers the control of a single-link flexible-joint robotic manipulator subject to actuator

saturation. Several alternative controllers are proposed and compared to one found in literature. In particular,
a controller with proportional and derivative components is guaranteed toprovide a total torque less than a
chosen value thereby disallowing actuator saturation. It is shown that an equilibrium point of the closed-loop
system is asymptotically stable. Additionally, it is shown that the controllers are robust to modelling errors.
Finally, this paper presents experimental results demonstrating the proposed control architecture.

Keywords: proportional derivative control; saturation avoidance; flexible-joint manipulator.

LE CONTRÔLE PROPORTIONNEL DÉRIVÉ SATURÉ D’UN MANIPULATEUR À JOINT
FLEXIBLE

RÉSUMÉ
Ce papier, considère le contrôle d’un manipulateur robotique à joint flexiblesujet à la saturation d’ac-

tuateur. Plusieurs contrôleurs alternatifs sont proposés et comparés àun contrôleur dans la litérature. En
particulier, un controleur avec une portion proportionnelle et une portiondérivée, qui garanti un moment
de torsion total moins qu’une valeur spécifiée. Il est démontreé qu’un point d’équilibre du système à cir-
cuit fermé est asymptotiquement stable. En plus, il est attesté que les contrôleurs sont robustes aux erreurs
de modélisation. Finalement, ce papier présente des résultats expérimentaux qui illustrent l’application des
contrôleurs proposés.

Mots-clés : contrôle proportionnel dérivé ; l’évitement de saturation ; manipulateur à joint flexible.
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1. INTRODUCTION

Robot manipulators are used in many branches of manufacturing for taskssuch as robotic welding and
automated assembly. The flexibility of manipulator joints is often left unmodelled anduncontrolled, leading
to performance limitations [1, 2]. This flexibility is caused by the gears and beltsused to transmit the torque
produced by the actuators to the links [2]. Often the natural frequenciesof these joints are relatively low
(2−3 Hz), which coincide with the frequency of the trajectory being followed, forcing the operator to wait
for any vibrations to decay naturally [3]. Moreover, in large robotic manipulators, such as the Canadarm,
even a relatively small joint flexibility can cause significant vibrations at the manipulator tip, which is
highly undesirable. Several authors have investigated the modelling and control of flexible-joint robotic
manipulators using widely varying techniques [4–8].

Actuator limitations also become a factor when controlling flexible-joint robotic manipulators. Power-
ful motors are generally large and heavy which is undesirable; the increased mass of the system results in
increased power requirements, as well as possible performance limitations [9]. For this reason, somewhat
smaller or at least modestly sized motors are used in practice, resulting in limited joint torques. As such,
avoiding actuator saturation while simultaneously assuring asymptotic stability of the closed-loop equilib-
rium point is of great interest. In the context of robotic manipulators, various authors have studied saturation
avoidance [10–12]. Spacecraft attitude control accounting for actuator saturation has also been investigated
in [13–15]. In particular, in [13] a simple proportional derivative (PD)type control law that explicitly ac-
counts for actuator saturation is presented.

The novel contribution of this paper is adopting and building upon [13] by designing and analyzing PD
control laws specifically for a single-link flexible-joint robotic manipulator. Specifically, four PD controllers
will be considered that disallow actuator saturation and simultaneously guarantee asymptotic stability of
the equilibrium point of the closed-loop system. Additionally, experimental validation of the proposed
controllers will be performed, and they will be compared to an existing controller found in the literature.

The remainder of this paper is as follows. In Section 2 the dynamics of a one-link flexible robotic manipu-
lator are derived. In Section 3 the proposed controllers are presentedand shown to be asymptotically stable,
even in the presence of parameter uncertainty. Section 4 presents experimental results, thus validating the
proposed controllers, and some final remarks are given in Section 5.

2. SYSTEM DYNAMICS

Consider the single-link flexible-joint robotic manipulator shown in Fig. 1. Thekinetic and potential
energies, as well as the Rayleigh dissipation function, respectively are

T = 1
2q̇TMq̇,

U = 1
2qTKq ,

R = 1
2q̇TDq̇,

whereM = MT > 0 is the system’s mass matrix,K = KT ≥ 0 is the system’s stiffness matrix,D = DT > 0

is the system’s damping matrix, andq =
[

θ α
]T

is the generalized coordinate of the system. The angle
θ is the angle of the base hub relative to a fixed inertial frame andα is the angle of the manipulator link
relative to the base hub. Using a Lagrangian approach, the equations ofmotion can be found to be

Mq̈+Dq̇+Kq = b̂τc, (1)
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Fig. 1. Schematic of a flexible-joint.

whereb̂ is the matrix that distributes the applied torque to the system andτc is the torque input to the system.
The mass, stiffness, damping, and input matrices of our system are

M =

[

J1+ J2 J2

J2 J2

]

, K =

[

0 0
0 ks

]

, D =

[

d1 0
0 d2

]

, b̂ =

[

1
0

]

,

whereJ1, J2 are the moment of inertias of the manipulator hub and link respectively,ks is the torsional spring
constant between the hub and link, andd1, d2 are the damping coefficients of the hub and link respectively.

3. CONTROL FORMULATION

3.1. Control Law
Consider the following PD control law:

τc = up +ud,

whereup is proportional control andud is derivative control. The authors of [11] propose usingup =
−kp arctan(θ) and ud = −kd arctan(ω), whereθ is the joint angle andω = θ̇ is the angular velocity of
the joint. This ensures that|τc| ≤ kp + kd, thereby avoiding actuator saturation. For the attitude control of
spacecraft, the authors of [13] propose using proportional and derivative control similar toup =−kp

p√
1+p2

andud =−kd tanh(ω), wherep = tan(θ/2) is a Gibbs parameter. This paper proposes adapting the work of
[13] to be used to control a single-link flexible-joint robotic manipulator, as well as introducing alternative
control laws.

To motivate the structure the proposed controller, recall that the Gibbs parameter,p ∈ R
3, is related to

Euler axis/angle variables by
p = atan(θ/2). (2)

The relationship between the angular velocity and the time rate of change of theGibbs parameter is [16]

ṗ = 1
2

(

1+p×+pTp
)

ωωω. (3)

Considering only rotation about a single axis, Eqs. (2) and (3) simplify to

p = tan(θ/2), (4)

ṗ = 1
2

(

1+ p2)ω . (5)

These properties will assist in the selection of alternative control laws andin proving stability.
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The one-link flexible-joint robotic manipulator presented in Section 2 rotates about a single axis, which
allows the work of [13] to be adapted in the following way. First,up andud are specified as

up =−kp f (p), (6)

ud =−kd tanh(ω), (7)

where f (x) = x√
1+x2 , p is a Gibbs parametrization of the joint angleθ . Note that bothf (p) and tanh(ω) are

bounded by -1 and 1, which constrains the torque of the actuator to be lessthan the sum ofkp andkd , that is
|τc| ≤ kp + kd . This property ensures actuator saturation is avoided, as long askp andkd are chosen to add
up to less than the maximum torque that the actuator can apply.

An alternative control formulation is
up =−kp f (θ/2), (8)

ud =−kd f (ω). (9)

Eqs. (8) and (9) are slight variations of Eqs. (6) and (7), wherep is replaced byθ/2 and tanh(ω) is replaced
by f (ω).

The four proposed control laws to be investigated are

−τc = kp f (p)+ kd f (ω), (10)

−τc = kp f (p)+ kd tanh(ω), (11)

−τc = kp f (θ/2)+ kd f (ω), (12)

−τc = kp f (θ/2)+ kd tanh(ω). (13)

Note thatθ/2 is used to match the linearization ofp = tan(θ/2) aboutθ = 0 deg. A comparison of
the relative control effort supplied by each option is presented in Fig. 2.The function 2

π arctan(πθ/4) is
included in Fig. 2 to serve as a comparison to a controller found in literature [11]. The factors2

π andπ/4
were added to the arctan function in order to also match the linearization ofp = tan(θ/2) aboutθ = 0 deg.
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Fig. 2. Relative control effort versusθ .

Fig. 2 serves as motivation to usef (p) for proportional control, due to its nonlinearity and relative
aggressiveness further away fromθ = 0 deg. This larger relative control effort should allow the controller
to drive the system to the desired equilibrium quicker.
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3.2. Stability Analysis
We will now consider the closed-loop stability properties of the manipulator given in Eq. (1), and the four

control laws given in Eqs. (10) to (13), each of which disallow the possibility of actuator saturation when the
gainskp andkd are chosen appropriately. The control laws given by Eqs. (10) and (11) will be considered
first.

Theorem 1.The dynamics of the single-link flexible-joint robot found in Eq. (1) on the domain−π < θ < π,
−π <α < π, θ̇ ∈R, α̇ ∈R together with the control laws given by Eqs. (10) and (11) render the equilibrium
point (q, q̇) = (0,0) of the closed-loop system asymptotically stable.

Proof. First, note that it can be easily shown using Eq. (1) and either Eq. (10) orEq. (11) that(q, q̇) = (0,0)
is in fact an equilibrium point of the closed-loop system. Next, consider the Lyapunov function candidate:

V = 1
2q̇TMq̇+ 1

2qTKq +2kp

(

1− 1
√

1+ p2

)

.

Taking the derivative ofV and simplifying using Eqs. (1) and (5) yields

V̇ = 1
2

(

q̈TMq̇+ q̇TMq̈
)

+ 1
2

(

q̇TKq +qTKq̇
)

+2kp
pṗ

(1+ p2)3/2

= q̇TMq̈+ q̇TKq +2kp
p
(

1
2(1+ p2)ω

)

(1+ p2)3/2

= q̇T (Mq̈+Kq)+ kp
pω

√

1+ p2

= q̇Tb̂τττc − q̇TDq̇+ kp
pω

√

1+ p2

= −q̇TDq̇+ω

(

−kp
p

√

1+ p2
− kdh(ω)

)

+ kp
pω

√

1+ p2

= −q̇TDq̇− kdh(ω)ω ,

whereh(ω)ω = ω2√
1+ω2 when using Eq. (10), andh(ω)ω = ω tanh(ω) when using Eq. (11). Owing to the

fact thatV̇ is negative semidefinite, the closed-loop system is stable. To show that the closed-loop system is
asymptotically stable we will employ LaSalle’s Invariant Set Theorem [17]. Notice thatV̇ = 0 only if q̇ = 0
(becauseD is positive definite), which implies thatq = 0 andτc = 0. From LaSalle’s Invariant Set Theorem
it follows that the equilibrium point(q, q̇) = (0,0) is asymptotically stable [17].�

Theorem 2.The dynamics of the single-link flexible-joint robot found in Eq. (1) on the domain−π < θ < π,
−π <α < π, θ̇ ∈R, α̇ ∈R together with the control laws given by Eqs. (12) and (13) render the equilibrium
point (q, q̇) = (0,0) of the closed-loop system asymptotically stable.

Proof. First, note that it can be easily shown using Eq. (1) and either Eq. (12) orEq. (13) that(q, q̇) = (0,0)
is in fact an equilibrium point of the closed-loop system. Next, consider the Lyapunov function candidate:

V = 1
2q̇TMq̇+ 1

2qTKq + kp

(

√

1+(θ/2)2−1

)

.
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Taking the derivative ofV and simplifying using Eqs. (1) and (5) yields

V̇ = 1
2

(

q̈TMq̇+ q̇TMq̈
)

+ 1
2

(

q̇TKq +qTKq̇
)

+ kp
θ/2

√

1+(θ/2)2
θ̇

= q̇T (Mq̈+Kq)+ kp
θ/2

√

1+(θ/2)2
ω

= q̇Tb̂τττc − q̇TDq̇+ kp
θ/2

√

1+(θ/2)2
ω

= −q̇TDq̇+ω

(

−kp
θ/2

√

1+(θ/2)2
− kdh(ω)

)

+ kp
θ/2

√

1+(θ/2)2
ω

= −q̇TDq̇− kdh(ω)ω ,

whereh(ω)ω = ω2√
1+ω2 when using Eq. (12), andh(ω)ω = ω tanh(ω) when using Eq. (13). Owing to the

fact thatV̇ is negative semidefinite, the closed-loop system is stable. To show that the closed-loop system is
asymptotically stable we will employ LaSalle’s Invariant Set Theorem [17]. Notice thatV̇ = 0 only if q̇ = 0
(becauseD is positive definite), which implies thatq = 0 andτc = 0. From LaSalle’s Invariant Set Theorem
it follows that the equilibrium point(q, q̇) = (0,0) is asymptotically stable [17].�

Note that this stability analysis holds for any numerical system parameters, provided thatD = DT > 0
is positive definite, ensuring the controllers are robust to modelling errors. Assuming thatD = DT > 0 is
positive definite is reasonable since there will always be some residual friction in the flexible-link system.

4. EXPERIMENTAL RESULTS

The proposed controllers are now validated experimentally by testing them ona rotary flexible-joint exper-
imental testbed built by Quanser Consulting Inc [18]. The testbed has numerical values ofJ1 = 2.08×10−3

(kg·m2), J2 = 3.28× 10−3 (kg·m2), ks = 1.3 (N·m/rad),d1 = 4× 10−3 (N·m/(rad/s)), andd2 = 1× 10−6

(N·m/(rad/s)). The base of the flexible joint is fixed, while the hub and link are rotated by an angleθ and
α respectively. All control laws were tested on the nominal system and the perturbed system, as shown in
Fig. 3. The perturbed system has a link inertia that is approximately 22 % greater than that of the nominal
system.

(a) (b)

Fig. 3. (a) Nominal and (b) perturbed experimental systems.

4.1. Set-Point Regulation
A step input of 90 degrees was given as a set point to the controller. In these testskp = 0.6 (N·m) and

kd = 0.15 (N·m), which guarantees|τc| ≤ 0.75 (N·m). In Fig. 4 is theθ versus time responses for the four
proposed controllers. In Fig. 5 are theθ andα responses,up, the applied proportional torque, andud , the
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applied derivative torque versus time for all proposed controllers and acontroller found in [11]. Note that the
functionsg(θ/2) andg(ω) in the legend of Fig. 5 represent arctan(πθ/4) and arctan(πω/2) respectively.
In Fig. 6 are theθ andα responses,up versus time, andud versus time of the perturbed system.
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Fig. 4. θ versus time.

0 0.5 1 1.5 2
0

20

40

60

80

100

Time (s)

θ
(d

eg
)

 

 

kpf (p) + kdf (ω)
kpf (p) + kd tanh(ω)
kpf (θ/2) + kdf (ω)
kpf (θ/2) + kd tanh(ω)
2/πkpg(θ/2) + 2/πkdg(ω)

(a)

0 0.5 1 1.5 2
−15

−10

−5

0

5

10

15

Time (s)

α
(d

eg
)

(b)

0 0.5 1 1.5 2
−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

u
p
(N

·
m

)

(c)

0 0.5 1 1.5 2
−0.15

−0.1

−0.05

0

0.05

0.1

Time (s)

u
d
(N

·
m

)

(d)

Fig. 5. Nominal system experimental set-point regulation results: (a)θ versus time, (b)α versus time, (c)up versus
time, and (d)ud versus time.
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Fig. 6. Perturbed system experimental set-point regulation results: (a)θ versus time, (b)α versus time, (c)up versus
time, (d)ud versus time.

4.2. Trajectory Tracking
Trajectory tracking will now be considered. Consider the following desired trajectory, which can be found

by interpolating a fifth order polynomial to satisfy a set of boundary conditions:

θd(t) =

[

10

(

t
t f

)3

−15

(

t
t f

)4

+6

(

t
t f

)5
]

(θ f −θi)+θi, (14)

whereθi is the initial position ofθ , θ f is the final position ofθ , andt f is the time required to move from
θi to θ f . This desired trajectory in Eq. (14) was input to the various controllers tested as a reference input.
Values ofθi = 0 deg,θ f = 90 deg andt f = 1 second were used during the experiments. The controllers
were tuned tokp = 1.7 (N·m) andkd = 0.05 (N·m), which guarantees|τc| ≤ 1.75 (N·m). Note that although
experimental trajectory tracking results are presented, the asymptotic stabilityof our controllers subject to
a tracking input has not been proven. In Fig. 7 is theθ andα response of the system, as well asup andud

versus time. Figure 8 shows the same information for the perturbed system. Note that Figs. 7 and 8 use the
same legend presented in Figs. 5 and 6 with the addition of the desired trajectories in Figs. 7(a) and 8(a).

4.3. Discussion
The results of the experimental tests show that the proposed controllers behave quite similarly to an ex-

isting controller taken from [11], which was also used for saturation avoidance. As expected, the controllers
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Fig. 7. Nominal system experimental tracking results: (a)θ versus time, (b)α versus time, (c)up versus time, (d)ud

versus time.

that are shown to be more aggressive in Fig. 2 do result in more overshoot in the set-point experiment, while
having a slightly shorter settling time. In the tracking experiments the controllers gave almost identical
system responses. The joint angle was never more than 20 degrees away from the trajectory it was tracking,
which meant all controllers were within the linear region between−20 deg< θ < +20 deg seen in Fig. 2
where all controllers are identical, which explains the almost identical results. Figures 5(d), 6(d), 7(d) and
8(d) show that not all controllers allow the actuator to fully saturate. It is interesting to note that although the
controllers provide relatively different derivative control, the systemresponses are quite similar. The use of
the functionf (x) in the control architecture is attractive, since it is computationally easier to compute than
tanh(x) or arctan(x), while maintaining a similar system response.

5. CONCLUSIONS

This paper has investigated the control of a single-link flexible-joint roboticmanipulator using various
controllers that assure actuator saturation avoidance. Moreover, it was shown that the proposed controllers
render the desired equilibrium point of our closed-loop system asymptotically stable. The experimental
results suggest that the proposed controllers perform similarly to saturation avoidance controllers found in
literature, but this may not necessarily be true in all conditions. It is also worth mentioning thatf (x) is
computationally easier to compute than tanh(x) or arctan(x), which is crucial in robotic applications with
limited computational hardware.
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Although this paper dealt with a one-link flexible-joint robotic manipulator, this should be extended in
future work to include multi-link robotic manipulators. Such an extension would allow the proposed con-
trollers to be implemented on a wide range of robotic manipulators.
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Fig. 8. Perturbed system experimental tracking results: (a) θ versus time, (b)α versus time, (c)up versus time, (d)ud

versus time.
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