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Abstract  
In the work presented, the redundancy resolution of planar wire-actuated parallel manipulators is investigated 
at the torque level using analytical methods in order to perform desirable tasks. As an example application 
where there are forces and moments at the mobile platform, wire-actuated manipulators are used in machining 
operations. The kinematic analysis and trajectory planning of the mobile platform are investigated taking into 
account the depth of cut and the geometry of the cutting surface. Considering the actuation redundancy, wire 
diameter and material recommendations are made for a given cutting force in the machining process. Analytical 
methods are used in the formulations in order to minimize the norm of actuator forces/torques such that the 
minimum required cutting force is achieved. The effectiveness of the presented approaches is studied through 
a simulation of an example planar wire-actuated manipulator.  
Keywords: Wire-actuated parallel manipulators, redundancy resolution, machining applications
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1.  INTRODUCTION 

In closed-loop manipulators, the manipulator is redundantly actuated if the number of actuators is greater 
than the degrees of freedom of the manipulator, where for a given end effector trajectory and external 
forces/moments, an infinite number of actuator forces/torques exists. Redundant manipulators can use their 
degree(s) of redundancy to satisfy additional desirable task(s), e.g., to avoid actuator torque/force limits, 
reduce impact, and improve reliability, safety and performance of the manipulator. A parallel manipulator 
consists of a mobile platform (end effector) connected to a fixed base by several branches/legs/limbs/wires. 
If all links of a manipulator are constrained to move in a plane or in parallel planes, then the manipulator is 
called planar. Wire-actuated parallel manipulators are a special kind of parallel manipulator with the 
advantage of being light weight, reconfigurable and transportable, and allowing high speed motion and a 
larger workspace compared to conventional manipulators. Wires can only apply force in the form of tension. 
Therefore, to design a fully controllable wire-actuated parallel manipulator, the manipulator has to be 
redundantly actuated. Thus, to keep positive tension in all wires, at least n + 1 wires are required for a 
manipulator with n degrees of freedom (DOF) [1-4]. 

Various techniques have been applied for redundancy resolution of redundant manipulators. When 
resolving redundancy at the torque level, given the external forces and moments on the mobile platform, 
because of the existence of infinite solutions for the actuator forces/torques some actuator forces/torques 
(referred to as the homogenous solution) result in zero forces/moments at the mobile platform. The 
homogenous solution can be used to achieve desirable performance criteria, improve the performance, and 
have a fail-safe manipulator. The kinematic, dynamic and stiffness analyses, as well as, the design of wire-
actuated manipulators have been studied, e.g., [1-9]. Some researchers, e.g., [6, 8, 9], investigated how to 
design positive tension controllers for wire-actuated manipulators to follow prescribed trajectories. Kawamura 
et al. [1] used non-linear elasticity of wires and the internal forces arising from the redundant actuation to 
reduce the undesirable vibrations of wire-actuated parallel manipulators.  

A wire-actuated manipulator can be used for various applications similar to those of solid-link parallel 
manipulators. Depending on the application of the manipulator, e.g., assembly, machining and pick-and-place 
applications, knowing the required loads on the mobile platform is of great interest in order to minimize the 
wire tensions, motor torques and power consumption. It is also beneficial to know whether the mobile platform 
can maintain its position and orientation (pose) while providing the required forces/moments at the mobile 
platform. In the presented work, a wire-actuated manipulator is used in machining applications. Then, for a 
given machining trajectory and cutting force, the trajectory of the mobile platform is determined. Analytical 
methods are utilized to find the minimum norm tension in the wires corresponding to the desired cutting force. 
Some of the challenges associated with the redundancy resolution of wire-actuated parallel manipulators, 
including positive tension requirement in each wire, infinite inverse dynamic solutions, and using fast-
computation abilities when utilizing analytical methods are addressed. Since wires are more flexibile than rigid 
links, possible vibration of wires and the mobile platform is a concern when dealing with wire-actuated 
manipulators. Thus, the investigation of vibration of wire-actuated manipulators is important for applications 
requiring high system stiffness or bandwidth [10]. These vibrations could be reduced by increasing the internal 
forces (i.e., the pre-tension in the wires) of wire-actuated parallel manipulators using the homogenous solution 
in order to provide more stable motion. To achieve precise path tracking of the platform while damping out the 
undesirable mechanical vibrations, intelligent control system, including sensor feedback control, could also be 
developed. It should be noted, however, that vibration analysis is beyond the scope of the work presented. 

The modelling of an example planar wire-actuated parallel manipulator is presented in Section 2, where 
Section 2.1 corresponds to the kinematic and dynamic analyses, Section 2.2 covers the trajectory planning 
of the mobile platform and the kinematics of the tool tip, and Section 2.3 provides the force relationships 
and power requirements in cutting operations. The simulation results are reported in Section 3. The article 
concludes with Section 4. 
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2.  MODELLING 

In this section, the redundancy resolution of a planar wire-actuated parallel manipulator shown in Figure 
1(a) is investigated at the dynamic level. Figure 1(b) shows the coordinates and parameters used for the 
analysis of a planar wire-actuated parallel manipulator. The fixed coordinate system X, Y), located at O, is 
attached to the base, while the moving coordinate system, X, Y), is attached to the mobile platform at its 
centre of mass P with position vector of xP = [x, y]T in X, Y). All vector expressions will be in the base 
reference frame unless otherwise stated. The position of the base attachment point of each wire (anchor) Ai is 
ai = [aix, aiy]

T, rBi/P is the distance between the attachment point of wire i on the mobile platform Bi and point P, 
i is the orientation of the position vector rBi/P in X, Y), and li = [licosi, lisini]

T is the vector of the 
magnitude and direction of each wire.  

 

(a) (b) 

Figure 1. (a) Example planar 3-DOF wire-actuated parallel manipulator, (b) coordinates and variables. 

Figure 2(a) illustrates the schematics of a planar wire-actuated manipulator used in cutting applications, 
and Figure 2(b) shows a schematic representation of orthogonal cutting, wherein the cutting edge is 
perpendicular to the cutting velocity. 

 
(a) (b) 

Figure 2. (a) Example application of wire-actuated parallel manipulator in cutting operations, (b) schematic 
representation of orthogonal cutting. 
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2.1. Kinematic and Dynamic Analyses 

The inverse velocity solution that relates the mobile platform velocity x = [ x , y ,  ]T to the wire length 
rates l  = [ 1l

 , , nl
 ]T is given by 
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where ci, si and s( + i − i), i = 1, , n, stand for cosi, sini and sin( + i − i), respectively,  is the 
orientation of the mobile platform, n (n ≥ 4) is the number of wires, and the Jacobian matrix J is the 
negative of the coefficient of the mobile platform velocity.  

Considering the free-body diagram of the mobile platform shown in Figure 3(a), the dynamic force and 
moment balances can be written as  
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where m and Iz are the mass and moment of inertia of the mobile platform respectively, [1, , n]
T is the 

vector of wire tensions, 
xextF  and 

yextF  are the components of the external force Fext, zextM  is the external 

moment acting on the mobile platform, M is the inertia matrix, x  = [ x , y ,  ]T is the vector of linear and 
angular accelerations of the mobile platform, g is the vector of gravitational force with g = 9.81 m/s2, and W 
represents the external forces and moments (wrench). 

 

(a) (b) 
Figure 3. (a) Free-body diagram of mobile platform, (b) free-body diagram of pulley of wire i. 

Considering the free-body diagram of the pulleys shown in Figure 3(b), the actuators dynamics is 
expressed as 
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where Ti is the torque motor i exerts, rpi is the radius of spool i, cmi is the viscous damping coefficient at 
motor shaft i, Ipi is the moment of inertia of spool i, β , β  and β  are respectively the vectors of spool 
rotations, angular velocity and angular acceleration. The angular velocities of spools are related to the wire 
length rates as: 

i
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where i is the rotation of spool i and il
  is given by equation (1). For the considered convention shown in 

Figure 3(b), a positive change in angle i will cause a negative change in the length of wire i. Using the 
backward difference method, i  is approximated as  
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where t = tk − tk −1 is the time step; the time index k corresponds to the iteration number for the time step. 
Having the tension in the wires and substituting i  from equation (4), and i  given by equation (5) into 
equation (3) the relation between the actuator torques and the velocity of the mobile platform will be 
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2.2. Kinematics of the Tool Tip and Trajectory Planning  

The material removal is considered in the modelling to investigate the effect of required cutting forces in 
the redundancy resolution of wire actuated parallel manipulators. Knowledge of the forces and power 
involved in cutting operations is important in order to select the machine tool with adequate power, 
determine if the workpiece can withstand the cutting forces without excessive distortion, and to design the 
machine tools properly in order to avoid damaging the machine elements and maintain the desired 
tolerances for the finished part, tooling and toolholders, and workholding devices [11]. 

 

(a) (b) 
Figure 4. (a) Force diagram in orthogonal cutting [11], (b) free-body diagram of mobile platform during machining. 

  

αi 

Y 

Bi i 

X 
P 

Y 

O 
X 

Fc 

  w 

Ft C2 
C1 

mg 

 Fc N 
αr 

s 

Ft 

vt 

αr 

R 

f 

Fn 

Fs 

R 

Chip 

Workpiece 

Tool 

Ff 

w 



2011 CCToMM M3 Symposium   6 

The forces acting on the chip in orthogonal cutting are shown in Figure 4(a) and the free-body diagram 

of the mobile platform during cutting operation is shown in Figure 4(b). Line segment 21CC  represents the 

cutting tool, where point C2 corresponds to the tool tip. Figure 5 represents the cutting tool and workpiece 
variables, as well as the path of the tool tip, C2, during machining process. Considering Figure 5, the 
position of the mobile platform can be written as 
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where the position vector of the contact point C2 on the cutting tool is T
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where T
PCPCPC yx

rr ],[ /// 111
r  is the position vector of the tool attachment point on the mobile platform 

with respect to P, and T
CCCCCC yx

rr ],[
121212 /// r represents the position vector of the tool. 

 
Figure 5. Schematic illustration of cutting tool, workpiece and desired path of tool tip. 
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where 
2PC  is the orientation of the position vector PC /2

r  obtained as below using the four-quadrant inverse 

tangent and the trigonometry such that  20
2
 PC  
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For the inverse velocity solution of equation (1) and the dynamic force and moment balances of equation 
(2), it is required to have the velocity and acceleration of the mobile platform. Differentiating equation (9) 
results in 
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It should be noted that the rate of change of 
2PC , 

2PC , is equal to the angular velocity of the mobile 

platform,  . Equation (11) can be used in equation (1) for the inverse velocity analysis. The acceleration 
of the mobile platform is obtained by differentiating equation (11) as 
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The mobile platform acceleration derived using equation (12) can then be substituted into equation (2) 
for the inverse dynamic analysis. 

As an example path planning procedure, an oblique cutting surface can be used for the machining 
operation, as depicted in Figure 5. Points W1 and W2 correspond to the edge corners of the cutting surface of 
the workpiece. W3 and W4 are, respectively, the contact points at which the cutting process starts and ends. 
W5 and W6 refer to the initial and final positions of the tool tip, respectively. The dashed line between W5 
and W6 represents the desired path of the tool tip. Considering the depth of cut, dct, the cutting path is chosen 
to be a line passing through points W3 and W4. The cutting trajectory can be determined using the initial and 
final boundary conditions of 

2Cx  and its derivatives. For trajectory planning, the following procedure is 

undertaken. For a linear path, coordinates of W3 and W4 are determined as 
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where w  is the slope of the desired linear path as shown in Figure 5. Given the distances between W3 and 

W5, 35 /WWr , and between W4 and W6, 46 /WWr , as well as using equation (13), the initial and final positions of 
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Moreover, the geometric representation of the cutting path (i.e., a line passing through W3, W4, W5, and 
W6) is given by 
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Thus, depending on the number of boundary conditions of the cutting trajectory, a polynomial equation is 
selected for the x component of the trajectory, 

2Cx . Then, using equation (16), the cutting trajectory in y 

direction, 
2Cy , is determined. 

2.3. Cutting Forces and Power in Orthogonal Cutting 

As has been shown by Merchant [12], the following force relationship can be written considering the 
force diagram shown in Figure 4(a) 

)tan( rfct FF    (17)

where Ft is the thrust force acting in the direction normal to the cutting velocity (i.e., perpendicular to the 
workpiece), Fc is the cutting force acting in the direction of the cutting speed vt supplying the energy for 
cutting, f  is the friction angle, and r  is the rake angle as shown in Figure 4(a). The relationship between 

the friction angle f  and the coefficient of kinetic friction k  in cutting is given as  
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where Ff is the friction force along the tool, and N is the normal component of the resultant force R that the 
tool exerts on the chip. The friction coefficient k  in metal cutting ranges from about 0.5 to 2.0 [11]. 
The power input in cutting is 

tcc vFP   (19)
where vt is the cutting speed. The total specific energy for cutting, ut, is  
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c
t vdw

P
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where wc is the width of cut and dct is the depth of cut as shown in Figure 2(b). Replacing the power input Pc 
in equation (20) with Pc in equation (19), the cutting force Fc is obtained as 

tctcc udwF   (21)
Because of the many factors involved, the reliable prediction of cutting forces and power is still based 

largely on experimental data [11], such as those given in Table 1. The wide range of values in Table 1 
corresponds to differences in strength within each material group and various other factors, such as friction, 
use of cutting fluids, and processing variables [11]. The sharpness of the tool tip also affects forces and 
power; the duller the tool, the higher are the forces and power required. 

Table 1. Approximate energy requirements in cutting operations (at drive motor, 
corrected for 80% efficiency; multiply by 1.25 for dull tools) [11]. 

Material Specific Energy 
Ws/mm3 

Material Specific Energy 
Ws/mm3 

Aluminium alloys 0.4-1.1 Nickel alloys 4.9-6.8 

Cast irons 1.6-5.5 Refractory alloys 3.8-9.6 

Copper alloys 1.4-3.3 Stainless steels 3.0-5.2 

High-temperature 
alloys 

3.3-8.5 Steels 2.7-9.3 

Magnesium alloys 0.4-0.6 Titanium alloys 3.0-4.1 
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Given the width of cut wc, depth of cut dct, and using the experimental data given in Table 1, the cutting 
forces can be predicted using equation (21). 

2.4. Contact Force Modelling in Orthogonal Cutting 

Using the obtained kinematic results for the velocity and acceleration of the mobile platform, the inverse 
dynamics of the manipulator represented by equation (2) can be analysed. 
Considering Figure 4(b), in the absence of any other external force/moment, Fext and 

zextM can be written as 

tcext FFF   (22)

and 

)sgn()(sin)(cos
222 CPCw/PCcPCw/PCtext vrFrFM

22z
     (23)

where the velocity of point C2 is )( 22

222 CC
yxvC   , and sgn(

2Cv ) is a signum function. Considering 

equation (17), equation (2) is written as 

  cgxMJ c
T

n
T F 1  (24)

where c is 



























)sgn()(sin)(cos)tan(

cos)tan(sin)sgn(

sin)tan(cos)sgn(

222

2

2

CPCw/PCPCwrf/PC

wrfwC

wrfwC

vrr

v

v

22






  

c  (25)

Considering the minimum and maximum allowable tension in the wires, min  and max , respectively, the 
solution of equation (24) is given by 

  hp
T

n ττ  1  

maxmin0   i  
(26)

where the minimum norm (particular) solution, p, is 

 cgxMJτ c
T

p F #  (27)

and the homogeneous solution,h, is 

kJJIτ )( # TT
h   (28)

The generalized inverse of the transposed Jacobian, JT, is JT# = J (JT J)−1. If JT has full row-rank, then JT# 
is invariant to the choice of any weighting metric, e.g., refer to Doty et al. [13]. Therefore, using a weighting 
metric will not be required. 

The homogeneous solution, h, maps the free vector k to the null space of JT. The homogeneous solution 
is interpreted as a portion of wire tensions that result in zero change in the forces/moments at the mobile 
platform. To simplify equation (26), h in equation (28) could be written as 

Nλτ h  (29)

where N is a matrix that its columns correspond to the orthonormal basis for the null space of JT and may be 
determined using the singular value decomposition, and  is an arbitrary vector.  

Considering the particular solution p, when 
ip  is negative or if the maximum tension limit is violated, 

using the actuation redundancy, the tension in the wires is modified satisfying the tension constraints. 
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Therefore, considering p, the minimum norm solution of , in equation (24), if the desired tension in wire i is 

im , i is replaced with 
im  as 

T
ni

T
mi i

][ 1  S  (30)

where S is a sparse n1 array in which only ith element, corresponding to the wire with different tension, has 
a value of 1. Substituting the solution of wire tensions given by equation (26) into equation (30) results in 

kSτS Np
T

mi i
   (31)

where )( # TTT
N JJISS   and it corresponds to the ith row of )( # TT JJI  . The minimum norm arbitrary 

vector k is then obtained as 

 cgxMJSSSk c
TT

NmN F
i

 ###   (32)

where 1# )(  T
NN

T
NN SSSS  is the generalized inverse of the ith row of )( # TT JJI  . Given the pose of the mobile 

platform, a feasible solution for k is characterized by a convex region bounded by 2n linear inequalities on 
the elements of k considering the inequality constraints of equation (26). On condition that the feasible 
region of each element of k is not empty, there exists a solution for wire tensions such that 
[

xextF , 
yextF , 

zextM ] = ccF . Otherwise, the tension constraints cannot be satisfied. As an example, if 
im  = 0, 

then 
ipN

#Sk  . If a solution exists for k, it can be concluded that the given pose is within the workspace. 

The procedure can be generalized when k wires have different tensions, the minimum norm arbitrary 
vector k is calculated as 

   cgxMJSSSk c
TT

kN
T

mmN F
kkk

  ###
1

  (33)

where Sk is a sparse matrix with n rows and k  r columns in which only elements si,k = 1, the degree of 
actuation redundancy is r = n – m, m is the dimension of the task space, index i corresponds to the wire with 
different tension, )( # TTT

kNk
JJISS  , and 1# )(  T

NN
T
NN kkkk

SSSS .  

It should be noted that for r degrees of redundancy, r extra constraints (e.g., desired tensions in r wires) 
result in a closed form solution for vector k (only if k has a feasible region). Therefore, if there are more 
than r desired constraints on specific wire tensions, there may not be a solution for vector k. 
Once wire tensions are calculated, a suitable wire is selected considering the maximum required wire 
tension and the safety factor. 

3.  SIMULATION 

In this section, the simulation results of redundancy resolution of the planar wire-actuated manipulator, 
shown in Figure 2(a), are presented. For the simulation, the anchor positions are {a1, a2, a3, a4} = {[−1, 
−0.75]T, [1, −0.75]T, [1, 0.75]T, [−1, 0.75]T} (units in meters), and the angular positions of wire attachment 
points on the mobile platform with respect to the moving frame are defined by {1, 2, 3, 4} = {225, 
315, 45, 135} (units in degrees). The mass m, moment of inertia Iz, and radius rBi/P of the mobile platform 
are respectively 2 kg, 0.0144 kg.m2, and 0.125 m. The moment of inertia of each spool Ipi, the radius of 
each spool rpi, and the viscous damping coefficient at each motor shaft cmi are respectively 0.0008 kg.m2, 
0.05 m, and 0.01 Nms. Considering the convention shown in Figure 3(b), all spool angles i are defined to 
be zero initially. The manipulator is designed to be used in cutting of Aluminum alloys with minimum 
required total specific energy of 0.4 Ws/mm3 as given in Table 1. The width of cut wc, the depth of cut dct, 
the coefficient of kinetic friction k , and the rake angle r  are respectively 4 mm, 1 mm, 0.5, and 10 deg. 

Considering Figure 5, the angles 1C , 2C  and w  are respectively 240 deg and 50 deg. The distance PCr /1
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is 0.12 m, 
12 / CCr  is 0.12 m, and the x and y coordinates of points W1 and point W2 are respectively [−0.25, 

−0.4]T and [0.5, −0.3]T. The distances 
35 /WWr  

46 /WWr  are equally 0.2 m. 

The desired trajectories for 
2Cx  and  are chosen to be fifth order polynomials satisfying eighteen initial 

and final boundary conditions of both trajectories and their derivatives. The initial and final boundary 
conditions              ,,,,

222
,xxx CCC  are (

5Wx , 0, 0, 0, 0, 0)0 and (
6Wx , 0, 0, 2 deg, 0, 0)f, respectively, with 

t[0, 10] s and time step of t = 0.01 s. Coordinates 
5Wx  and 

6Wx  are calculated using equation (14) and 

equation (15), accordingly. The cutting trajectory in y direction, 
2Cy , is determined using equation (16). The 

minimum allowable tension of each wire is min = 2 N. With four wires, the constraint function in equation 
(26) is reduced to eight linear inequalities in terms of  given in equation (29), where  is reduced to a scalar.  
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Figure 6. (a) Tool tip trajectory, (b) trajectory of mobile platform, (c) configuration of mobile platform.  

Figure 6(a), (b) and (c) show the tool tip trajectory, the mobile platform trajectory, and the configuration 
of the mobile platform along the given trajectory, respectively.  
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Figure 7. (a) Tension in wires, (b) actuator torques. 
Figure 7(a) illustrates the tension histories. It can be seen that the maximum wire tension during cutting 

process is approximately 2104 N. Thus, considering a safety factor of 3, a wire rope with a minimum 
breaking strength of 6104 N should be selected. For example, a zinc-plated rope with 3/8 in (9.5 mm) 
diameter and 14400 lbs (6532 kg) breaking strength is suitable for this application. These specifications 
were selected from McMaster-Carr Supply Company [14]. Substituting the wire tensions and the velocity of 
mobile platform into equation (6) results in the actuator torques shown in Figure 7(b). Considering Figure 
7(a) and (b), the machining operation starts at t = 3.06 s and finishes at t = 6.94 s. 
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4.  SUMMARY AND CONCLUSIONS 

In the work presented, the kinematics and dynamics of wire-actuated parallel manipulators was 
investigated in machining applications. Considering the machining surface and the depth of cut, the trajectory 
of the mobile platform was defined given the desired initial and final position, velocity and acceleration of 
the tool tip. The actuation redundancy of the manipulator was resolved while minimizing the wire tensions 
and following the machining trajectory with minimum positive tension in each wire. The infinite solutions 
for wire tensions were utilized to identify a vector of wire tensions providing the required cutting force 
based on the knowledge of the required machining power. The simulation of a 3-DOF planar wire-actuated 
parallel manipulator was developed satisfying machining requirements. 

This paper considered using wire-actuated manipulators in machining applications and made 
recommendations for the diameter and material of the wires to support the determination of wire tensions. 
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