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Abstract
The kinematic sensitivity is a unit-consistent measure that has been recently proposed as a mech-
anism performance index to compare robot architectures. This paper presents a robust geometric
approach for computing this index for the case of planar parallel mechanisms. The physical mean-
ing of the kinematic sensitivity is investigated through different combinations of the Euclidean and
infinity norms and by means of several illustrative examples. Finally, this paper opens the avenue
to the dimensional synthesis of parallel mechanisms by exploring the meaning of the global kine-
matic sensitivity index.

Keywords: Performance index, kinematic sensitivity, planar parallel mechanisms, redundant mech-
anisms, mechanisms with dependent degrees of freedom.

Analyse Géométrique de la Sensibilité Cinématique des Mécanismes Parallèles Plans

Résumé
La sensibilité cinématique a été proposée récemment comme un indice de performance pour com-
parer les architectures des robots en fonction de leurs propriétés cinématiques. Cet article présente
une approche géométrique robuste pour calculer la sensibilité cinématique des mécanismes par-
allèles plans en incluant exemples illustratifs. Dans cet article, la sensibilité cinématique est étudiée
par une combinaison des normes euclidienne et infinie afin d’obtenir la combinaison la plus sensée,
d’un point de vue physique. En outre, cet article ouvre des pistes pour la synthèse dimensionnelle
des mécanismes parallèles en explorant la signification de l’indice de sensibilité cinématique glob-
ale.

Mots-clé: Indice de performance, sensibilité cinématique, mécanismes parallèles plans, méca-
nismes parallèles redondants, mécanismes parallèles avec des degrés liberté dépendants.
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1 INTRODUCTION

The definition of sound general performance indices for mechanisms, including Parallel Manipu-
lators (PMs), has received much attention from the robotics research community [1]. This is due to
need to compare different robot architectures [2]. As reviewed in [1], the most notorious indices,
namely, the manipulability and the dexterity, still entail some drawbacks [1, 3–5], due to the im-
possibility of defining a single invariant metric for the special Euclidean group. In [1], two distinct
metrics are proposed: one for rotations and one for point displacements. They are referred to as
the kinematic sensitivity indices. These indices provide tight upper bounds of the magnitudes of
the end-effector rotations and point–displacements, respectively, under a unit–magnitude array of
actuated–joint displacements [1].

Hence, the maximum kinematic sensitivity is defined as the maximum error that occurs in the
Cartesian workspace as a result of bounded displacements in the joint space. In order to obtain
consistent unit, two indices have been defined [1]:

σrc,f
≡ max

‖ρ‖c=1
‖ φ ‖f , and σpc,f

≡ max
‖ρ‖c=1

‖ p ‖f , (1)

where, φ is the array of small rotations of the end–effector about the Cartesian axes, p represents
a small displacement of the operation point, and ρ is the array of small actuator displacements.
These two indices are referred to as the maximum rotation and point–displacement sensitivities,
respectively. In [1], the definitions of the kinematic sensitivity for serial and parallel mechanisms
are based on the same norm in the constraint and the objective functions, i.e., c = f . Obviously,
different norms for the constraint and objective functions of the kinematic sensitivity lead to dif-
ferent indices with different interpretations. This paper aims at investigating and comparing these
different indices, in order to end up with the most meaningful index for planar parallel mechanisms.
As a case study, emphasis will be placed on the 3-RPR parallel mechanism, which is considered a
representative example of planar parallel mechanisms in general.

Merlet in [6], concluded that the calculation of the mechanism performance indices must be
done while considering independent joint displacements, which immediately leads to c = ∞. The
results of this paper confirm this conclusion, and, moreover, provide some new observations and
interpretations on the use of different norms in the kinematic sensitivity indices. This paper also
extends and reviews the approach and routines used in [1] for c = f = 2, which leads to some
interesting closed–form solutions, and for c = f = ∞, using linear programming.

The remainder of this paper is organized as follows. First, the formulation used in [1] for
the Jacobian matrix of parallel mechanisms is reviewed. Then, the methods of computation of
the kinematic sensitivity for different combinations of Euclidean and ∞ norms are detailed, and
illustrated through typical examples for parallel mechanisms. The paper extends the study by
presenting the kinematic sensitivity as a global performance index of the mechanism, and, finally,
concluding remarks are given to provide more insight into ongoing research.
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Figure 1: Schematic representation of a planar 3-RPR parallel mechanism.

2 KINEMATIC SENSITIVITY OF FULLY-PARALLEL MECHANISMS

Differentiating the loop–closure equations of a parallel mechanism results in its first-order kine-
matics relationship, which can be formulated as follows [1]:

ρ = Kpp + Krφ, (2)

in which, ρ ∈ Rn represents small actuator displacements and x = [pT ,φT ]T stands for the
operation-point position and the orientation, i.e., the pose, of the end–effector. Moreover, consider
Kp ≡ [k1,k2,k3], Kr ≡ [k4,k5,k6] and K ≡ [Kp,Kr]. In parallel manipulators, according to
Eq. (2), constraint ‖ ρ ‖c≤ 1 may be rewritten as ‖ Kx ‖c≤ 1, which represents the set of
possible pose errors for unit bounds of the (small) actuator displacement errors. ‖ Kx ‖∞≤ 1 and
‖ Kx ‖2≤ 1 can be geometrically represented by a polyhedron and ellipsoid in R6, respectively.
These geometric interpretations are used in this paper to compute the kinematic sensitivity of the
mechanisms under study.

2.1 Kinematic sensitivity in the case for which c = ∞ and f = {2,∞}

The constraint ‖ Kx ‖∞≤ 1 represents a zonotope in R6. Since the objective functions of Eq.
(1) are both convex functions to be maximized, the optimum is bound to occur at a vertex of the
zonotope. The maximum objective value among all vertices are labelled σr∞,∞ for the rotational
part and σp∞,∞ for the point-displacement part. The maximum 2–norms of the rotational and
point-displacement parts are denoted by σr∞,2 and σp∞,2 , respectively. In order to compute σr∞,2

and σp∞,2 , one may proceed by vertex enumeration, i.e., compute the 2–norms associated with
each vertex and retain the largest. Thus, as the first step, the coordinates of these vertices should
be obtained, and to do so, the above constraint is formulated as follows:

L∆x � 112, (3)

in which, L ≡ [KT −KT ]T , � denotes the componentwise inequality, where 112 ≡ [1 1 · · · 1]T ∈
R12. Each row of Eq. (3) can be regarded as a hyperplane containing a facet of the constraint
polyhedron. The vertices of this zonotope are determined by the intersection points of different
combinations of six independent rows of Eq. (3). Each vertex can be obtained by multiplying the
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vector 16 with the inverse of the matrix formed by the corresponding independent rows. This zono-
tope has 2n vertices and is symmetrical about the origin. Thus the computation of the kinematic
sensitivity requires only the examination of half of the vertices.

As a case study, let us consider the 3-RPR parallel mechanism shown in Fig. 1, which in a given
posture has the Jacobian matrix [6]

K =

 0.5456 0.8380 0.0535
−0.8080 0.5892 0.5892
−0.8588 −0.5123 0.9999

 . (4)

To obtain σp,∞,∞ and σp,∞,2, the constraint equation is ‖ Kx ‖∞≤ 1. This constraint is equivalent
to 

0.5456 0.8380 0.0535
−0.8080 0.5892 0.5892
−0.8588 −0.5123 0.9999
−0.5456 −0.8380 −0.0535
0.8080 −0.5892 −0.5892
0.8588 0.5123 −0.9999


x

y
φ

 �


1
1
1
1
1
1

 . (5)

The above can be made equivalent to a polyhedron that has eight vertices. Note that this polyhedron
is symmetric about the origin, and therefore, it is sufficient to compute half of the vertices vi =
(xi, yi, φi), i = 1, . . . , 4. This can be done by considering four subsystems of three equations. For
instance, upon considering the first two equations combined in turns with the the third, the fourth,
the fifth and the sixth equation, we obtain the vertices

v1 =

0.6189
0.6706
1.8752

 , v2 =

 2.8143
−0.8301
2.9921

 , v3 =

1.6415
0.0952
0.4586

 , v4 =

−0.5539
1.5959
−0.6582

 . (6)

The remaining vertices, are merely the opposites of the latter, but they are not required for comput-
ing the kinematic sensitivity. According to the definition of the kinematic sensitivity, when c = ∞,
we have

σp∞,∞ = max( max
i=1,...,8

xi, max
i=1,...,8

yi) = max( max
i=1,...,4

|xi|, max
i=1,...,4

|yi|) = 2.8143, (7)

σp∞,2 =
√

max
i=1,...,8

x2
i + y2

i =
√

max
i=1,...,4

x2
i + y2

i = 2.9342, (8)

σr∞,∞ = σr∞,2 = max
i=1,...,8

φi = max
i=1,...,4

|φi| = 2.9921. (9)

As depicted in Fig. 2(a), only four vertices need to be compared in Eqs. (7-9), due to the symmetry
of the feasible set. Moreover, this mechanism has only one rotational DOF, and, consequently,
σr∞,∞ = σr∞,2 .

2.2 Kinematic sensitivity in the case for which c = 2 and f = {2,∞}

In [1], the calculation of the kinematic sensitivity using a 2–norm constraint with a 2–norm ob-
jective function is discussed in details. The constraint ‖ Kx ‖2≤ 1 geometrically describes an
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(a) ∞–norm constraint (polyhedron)
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(b) 2–norm constraint (ellipsoid)

Figure 2: Kinematic sensitivity constraint based on ∞–norm and 2–norm. The ellipsoid of 2–norm
constraint is completely surrounded by the polyhedron of ∞–norm constraint.

ellipsoid in R6. Let us use the notation as proposed in [7] to represent this ellipsoid, i.e.,

ε(06,K
TK) ≡ {x ∈ R6 | (x − 06)

TKTK(x − 06) = 1}, (10)

where, the first argument represents the position of the centre of the ellipsoid. In order to obtain the
maximum rotation and point-position kinematic sensitivities, we need to project the constraint el-
lipsoid ε(06,K

TK) on the position and the rotation subspaces, respectively. Directly from [1], we
can determine that the projected ellipsoids are coincident to ε(03,Ep) and ε(03,Er), respectively,
where Ep and Er are given as follows:

Ep = KT
p PrKp , Er = KT

r PpKr (11)

Pr ≡ 16×6 − Kr(K
T
r Kr)

−1KT
r , Pp ≡ 16×6 − Kp(K

T
p Kp)

−1KT
p . (12)

Having computed the projections of ellipsoid ε(06,K
TK) on rotation and point-position sub-

spaces, we may compute the lengths of their semimajor axes, which yield the corresponding kine-
matic sensitivities:

σp2,2 =
√
‖ E−1

p ‖2 =
1√

mini=1,2,3 λp,i

, σr2,2 =
√
‖ E−1

r ‖2 =
1√

mini=1,2,3 λr,i

, (13)

In these relations, λp,i and λr,i, i = 1, 2, 3, represent the eigenvalues of Ep and Er, respectively. The
same procedure may be used to compute the maximum error in every direction, xi, i = 1, . . . , 6, of
the Cartesian workspace, resulting from errors bounded by the 2–norm in the joint space (‖ ρ ‖2≤
1). Skipping mathematical details, we obtain the projection of constraint ellipsoid ε(06,K

TK)
along the axis xi, which we denote by ε(0, Ei)

Ei = kT
i P−iki, P−i ≡ 16×6 − K−i(K

T
−iK−i)

−1KT
−i, (14)
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in which, K−i is the Jacobian matrix K without its ith column ki. As ε(0, Ei) is the projection
on the axis, it is not an ellipsoid any more, but rather an interval centred at the origin, with Ei as
its inverse squared half-length. According to the definition of the kinematic sensitivities using the
2–norm constraint and the ∞–norm objective function, these indices may be computed as

σp2,∞ = max
i=1,2,3

di, σr2,∞ = max
i=4,5,6

di, (15)

where di = 1√
Ei

is the farthest distance along the xi axis.
In order to illustrate the derivation of these values, consider the case study of the 3-RPR whose

Jacobian matrix is momentarily given by matrix K of Eq. (4). We wish to compute the kinematic
sensitivity based on the 2–norm constraint for this example. From Eq. (12), we have

Pr =

 0.9979 −0.0234 −0.0396
−0.0234 0.7428 −0.4365
−0.0396 −0.4365 0.2593

 , Ep =

[
0.4253 0.3049
0.3049 1.3012

]
, (16)

Pp = P−3 =

 0.4154 −0.1988 0.4509
−0.1988 0.0951 −0.2158
0.4509 −0.2158 0.4895

 , Er = E3 = 0.3051
m2

rad2 . (17)

Using Eq. (13), one may derive

σp2,2 =
√

‖ E−1
p ‖2 = 1.7418, σr2,2 =

√
‖ E−1

r ‖2 =
1√
E3

= 1.8106
rad
m

. (18)

As the mechanism has only one rotational DOF, it follows that σr2,∞ = σr2,2 . In turn, from Eqs.
(14), the maximum distance along the x and y axes is obtained as

K−x =

 0.8380 0.0535
0.5892 0.5892
−0.5123 0.9999

 , P−x =

 0.4520 −0.4390 0.2345
−0.4390 0.4264 −0.2277
0.2345 −0.2277 0.1217

 , Ex = 0.3538, (19)

K−y =

 0.5456 0.0535
−0.8080 0.5892
−0.8588 0.9999

 , P−y =

 0.1587 0.3110 −0.1918
0.3110 0.6095 −0.3758
−0.1918 −0.3758 0.2317

 , Ey = 1.0826. (20)

where, dx = 1.6811 and dy = 0.9611. From Eq. (15), we reach σp2,∞ = max(dx, dy) = 1.6811.

2.3 Comparison Between Different Variants of the Kinematic Sensitivity

Figure 3 shows a geometric representation of different versions of the kinematic sensitivity. Ac-
cording to this figure, different kinematic sensitivity measures are related through the following
inequalities:

σ∞,2 ≥ σ∞,∞ ≥ σ2,∞, σ∞,2 ≥ σ2,2 ≥ σ2,∞. (21)

There is no such relationship between σ∞,∞ and σ2,2. According to Fig. 3, if the constraint ellipsoid
or polyhedron rotates, the value of σ∞,∞ and σ2,∞ would change in consequence while the value
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Figure 3: Geometric representation of different variants of kinematic sensitivity in the case of a
constrained manipulator.

of σ∞,2 and σ2,2 remain the same. Also, it should be noted that a change in coordinates, although
affecting the Jacobian of the mechanism for a given pose, should not affect its kinematic sensitivity
index. Because of this frame–invariant requirement, it may be concluded that it is preferable to
compute the norm of x using the 2–norm. Coupling this with the idea proposed by Merlet in [6],
according to which the constraint should be defined with the ∞–norm, σ∞,2 stands out as the most
meaningful index for the calculation of the point–displacement and rotation kinematic sensitivities.

3 KINEMATIC SENSITIVITY IN THE CASE OF REDUNDANT PARALLEL MECHANISMS

Redundant parallel manipulators have been introduced to alleviate some of the shortcomings of
fully parallel mechanisms in terms of kinematic properties, such as their large singularity loci [8,9].
In this section, the kinematic sensitivity of redundant planar parallel mechanisms is investigated
in order to gain a better understanding of their kinematic properties compared to those of fully
parallel mechanisms.

In redundant mechanisms, the number of hyperplanes generated by the ∞–norm constraint
increases and further confines the feasible set. As shown in Fig. 4(b), if the redundant rows—
corresponding to the redundant limbs—constrain the feasible polyhedron more tightly, they will
reduce the mechanism kinematic sensitivities. In redundant mechanisms, the number of vertices
of the zonotope generated by the ∞–norm constraint increases. Nevertheless, these vertices can
be determined by considering all possible subsets of three independent rows in Eq. (3). It should
be noted that some of the intersection points of these triplets of hyperplane constraints lie outside
the feasible polyhedron, as depicted in Fig. 4(b). Reaching this step, one should verify whether
the obtained point satisfies the remaining inequalities of Eq. (3). If not, then it is not a true vertex.

In order to illustrate the effects of redundancy, consider the above mentioned 3-RPR parallel
mechanism, whose Jacobian matrix K is given in Eq. (4). Assume that the legs of the manipulator
are all connected at the origin O′ of the moving frame, which results in a redundant mechanism that
has only two DOFs (planar point-displacements), and, therefore, the associated Jacobian matrix
has three rows and two columns. Considering only the first two actuators, ρ1 and ρ2, the first-order
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Figure 4: ∞–norm and 2–norm constraints, (a) a non-redundant and (b) a redundant mechanism
in a given pose. The representations of other indices are omitted to avoid overloading the figure,
see Fig. 3 for more information.

kinematics relationship of this mechanism results in[
ρ1, ρ2

]T
= K2×2x, where, K2×2 =

[
0.5456 0.8380
−0.8080 0.5892

]
. (22)

In this case, the constraint ellipse is represented by the equation

(0.5456x + 0.8380y)2 + (−0.8080x + 0.5892y)2 = 1. (23)

Figure 4(a) depicts the constraint ellipse and polygon corresponding to the given Jacobian. Assume
now that the third limb becomes active, while the pose of the end effector remains unchanged. The
Jacobian then matrix takes the following form:

[
ρ1, ρ2, ρ3

]
= K3×2

[
x
y

]
, where K3×2 =

 0.5456 0.8380
−0.8080 0.5892
−0.8588 −0.5123

 . (24)

In this case, the constraint ellipsoid is

(0.5456x + 0.8380y)2 + (−0.8080x + 0.5892y)2 + (−0.8588x − 0.5123y)2 = 1. (25)

It should be noted that the constraint ellipsoid of a redundant mechanism lies inside the constraint
ellipsoid of the non-redundant mechanism obtained by removing some of its legs, and taken in the
same posture. Therefore, the kinematic sensitivity is larger or equal to that of the latter. Using
the ∞–norm in the constraint leads to a similar conclusion. The number of planes that bound
the constraint polyhedron is increased in the case of redundant mechanisms, and the constraint
polyhedron becomes smaller or remains the same. Thus, the kinematic sensitivity may either
decrease or remain the same in the corresponding redundant manipulator.
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From the above it follows that upon transforming a fully actuated mechanism into a redun-
dant one, by adding on limb, one term would be added to the expression defining the constraint
ellipsoid which makes the constraint shape smaller. Based on the latter mathematical reasoning,
which is based on the 2-norm constraint, one would draw an erroneous conclusion that making a
mechanism redundant, would definitely decrease the kinematic sensitivity compared with the one
of the corresponding fully actuated mechanism. In fact, in the latter case, the kinematic sensitivity
would decrease or remain the same based on the pose and the design parameters of the mechanism.
This is coherent with the ∞–norm and makes it more credible than the 2–norm constraint. This
reconfirms that the constraint of kinematic sensitivity must be computed using ∞–norm and this
is consistent with the conclusion reached in [6].

In order to clarify this issue, assume an exaggerated example, where two of the legs of a re-
dundant 4-RPR planar parallel mechanism coincide exactly. From intuition, the sensitivity of such
a manipulator should be the same as that of the 3-RPR one obtained by removing one of the re-
dundant legs. In this case, exploring the kinematic sensitivity using a 2–norm constraint in the
definition of the kinematic sensitivity, will result in a smaller constraint ellipsoid in the case of the
redundant manipulator, and the kinematic sensitivity associated with the latter will be smaller. If
the problem is explored using an ∞–norm constraint, however, the redundant hyperplanes in the
Cartesian workspace are coincident, just as their corresponding legs. Therefore, the shape and size
of the polyhedron constraint remains unchanged, and the kinematic sensitivity is invariant as it
should be.

4 KINEMATIC SENSITIVITY OF PARALLEL MECHANISMS WITH DEPENDENT DOF
This section is devoted to the computation of the kinematic sensitivity for planar parallel mecha-
nisms with dependent DOF. In this kind of mechanisms, the Jacobian matrix takes the form[

ρ
0

]
=

[
Kactuation

Kconstraint

]
x. (26)

Failing to consider the equations Kconstraintx = 0 in the kinematic sensitivity analysis leads to
an unbounded constraint set ‖ Kactuationx ‖≤ 1. This is due to the fact that Kactuation does not
have full-column rank. Hence, the appropriate method for computing the kinematic sensitivity
must take into account both the equality constraint Kconstraintx = 0 and the inequality constraint
‖ Kactuationx ‖≤ 1.

Assume that one of the actuated joints of the 3-RPR manipulator is locked, effectively leaving
two DOFs of this mechanism, which otherwise has three. Assume that x and y are the important
pose parameters for this mechanism. The First–order kinematics of this mechanism may be written
as ρ1

ρ2

0

 =

n1x n1y (b1 × n1) · k
n2x n2y (b2 × n2) · k
n3x n3y (b3 × n3) · k

x
y
φ

 , (27)

in which ni = [nix, niy, 0]T , i = 1, 2, 3, stands for the unit vector along the direction of the ith

prismatic actuator. Moreover, bi, i = 1, 2, 3, is the vector connecting the centre of the moving
platform, O′, to point Bi and k = [0, 0, 1]T is the vector perpendicular to the end-effector plane.
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Figure 5: Geometric representation of the kinematic sensitivity constraints for a 3-RPR parallel
manipulator with dependent DOF mechanism, i.e., with a locked actuator.

Figure 5(a) shows the ∞–norm constraint associated with the kinematic sensitivity without con-
sidering the constraint row in Eq. (27). Note that this constraint row represents a plane in the
space R3, which is also shown in Fig. 5(a). In order to obtain the kinematic sensitivity, we must
compute the intersection of the unbounded zonotope ‖ Kactuationx ‖∞≤ 1 with the constraint row.
Figure 5(a) shows the intersections of the kinematic sensitivity constraint and the corresponding
constraint row, which is a parallelogram. Now, assume that K is as in the previous examples which
allows to obtain σp∞,∞ and σp∞,2 . The constraint, Eq. (3) can then be written as

0.5456 0.8380 0.0535
−0.8080 0.5892 0.5892
−0.5456 −0.8380 −0.0535
0.8080 −0.5892 −0.5892


x

y
φ

 �


1
1
1
1

 , and

−0.8588
−0.5123
0.9999

T x
y
φ

 = 0. (28)

The feasible polyhedron, (or parallelogram , in this case) has four vertices. Note that this poly-
hedron is symmetric about the origin, so that it is sufficient to compute a half of the vertices
vi = (xi, yi, φi), i = 1, 2. Hence, we obtain 0.5456 0.8380 0.0535

−0.8080 0.5892 0.5892
−0.8588 −0.5123 0.9999

x1

y1

φ1

 =

1
1
0

 =⇒ v1 =

0.0325
1.1333
0.6085

 , (29)

 0.5456 0.8380 0.0535
0.8080 −0.5892 −0.5892
−0.8588 −0.5123 0.9999

x2

y2

φ2

 =

1
1
0

 =⇒ v2 =

 2.2279
−0.3674
1.7253

 . (30)

The remaining vertices are the opposites of those of Eqs. (29) and (30). The corresponding objec-
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tive values are

σp∞,∞ = max( max
i=1,...,4

xi, max
i=1,...,4

yi) = max(max
i=1,2

|xi|, max
i=1,2

|yi|) = 2.2279, (31)

σp∞,2 = max
i=1,...,4

√
x2

i + y2
i = max

i=1,2

√
x2

i + y2
i = 2.2580, (32)

σr∞,∞ = σr∞,2 = max
i=1,...,4

φi = max
i=1,2

|φi| = 1.7253. (33)

The kinematic sensitivity based on 2–norm constraints may be computed in a similar way when
one of the mechanism actuated joints is locked. Figure 5(b) shows the ellipse of the 2-norm con-
straint obtained from the intersection of the ellipsoidal cylinder ‖ Kx ‖2≤ 1 and the plane of the
constraint corresponding to the locked joint.

5 KINEMATIC SENSITIVITY AS A GLOBAL PERFORMANCE INDEX

Since the kinetostatic indices generally depend on the pose of the mobile platform, the next step
consists in extending them to all the reachable poses of the mechanism. Following the reasoning
presented in [10], instead of considering the index I for a specific pose, a global index ζI covering
the manipulator workspace W is introduced as:

ζI =

∫
W

IdW∫
W

dW
. (34)

Notice that ζI tends towards infinity at singular poses when it is applied for σp∞,2 and σr∞,2.
Therefore, it is difficult to compare two mechanisms that have at least one singular point in their
workspace, as it is not clear whether the integral

∫
W

IdW converges or not. In the case where a
dimensional-synthesis method would guarantee the absence of singular poses, then Eq. (34) would
hold over the entire workspace, otherwise, however, in general, freeing the whole workspace from
all singular poses is impossible, and, consequently, there is a need for a more robust global index.
To circumvent this problem, consider the reasoning applied to the condition number in [10]. Point-
displacement and rotation sensitivities are bounded between zero and infinity, and hence, their
inverse are not helpful over the same interval. As the minimization of the variation of these indices
is of interest, the maximization of the inverse of their offshoot is suggested in this paper, i.e., we
define

σ′
r,2 =

1

1 + σr,2

, σ′
p,2 =

1

1 + σp,2

=⇒ 0 ≤ σ′
r,2 ≤ 1, 0 ≤ σ′

p,2 ≤ 1 (35)

The above indices are well defined, and may be used for optimization purposes.

6 CONCLUSIONS

This paper investigated the interpretation and calculation of different variants of the kinematic sen-
sitivity of planar parallel mechanisms. As a case study, the 3-RPR planar mechanism was analysed
and the corresponding kinematic sensitivities were given geometric interpretations. Analytical
relationships to compute each of the variations were obtained and discussed. Moreover, the cal-
culation of the kinematic sensitivity in the case of redundant and dependent-DOF planar parallel
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mechanisms are investigated, and some new observations are reported. Finally, the kinematic sen-
sitivity is extended to be considered as a global performance index for optimization purposes. The
principles of this paper can be applied equally well to the other types of parallel mechanisms, such
as the Stewart–Gough platform. Ongoing work includes the development of a robust approach to
obtain representative global kinematic sensitivity for optimization purposes.
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