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Abstract
In this paper modeling and control of cable-driven redundant parallel manipulators with flexible
cables are studied in detail. In this class of robots cables should remain in tension in the whole
workspace. Based on new results, in fully constraint cable robots, cables can be modeled as axial
springs. With this assumption the system is modeled using Lagrange’s formulation. Then, control
algorithm is proposed. Internal forces are introduced and incorporated in the proposed control
algorithm. This algorithm is formed in cable length coordinates in which the internal forces play
important role. Finally, the closed loop system is proved to be asymptotically stable, through
Lyapunov analysis, and the performance of the proposed algorithm is studied through simulation.

Keywords: Cable driven robot, Redundancy, Modeling, Vibration, Lyapunov stability.

1 INTRODUCTION

Cable driven robots are a class of parallel robots in which the rigid links are replaced by cables. A
cable driven robot consists of a moving end-effector and a number of active cables connected to
the end-effector. These cables are fixed on the base with actuating motors and pulleys. While the
cable length is changing, the position and orientation of the end-effector is pulled toward its desired
values. Cable driven robots have some advantages compared to conventional robots. Because of
using cables instead of rigid links, they have the great potential to use in very large workspace
applications such as large adaptive reflector and SkyCam [1, 2]. Since cables have negligible mass
and inertia, this type of robots are suitable for high acceleration applications. Moreover, they can
achieve some useful characteristics such as ”Transportability and ease of assembly/disassembly”,
”Reconfigurability by changing the location of motors and updating the control algorithm” and
”Economical structure and maintenance due to simple mechanical structure and using low cost
and simple mechanical components”. Consequently, cable driven robots are exceptionally suitable
to be used in many applications such as, handling of heavy materials [3], high speed manipulation

2011 CCToMM M3 Symposium 1



[4], rapidly deployable rescue robots, cleanup of disaster areas [5], and access to remote locations
and interaction with hazardous environment [6].

The most important limitation of cable driven robots is that, the cables suffer from unidirec-
tional constraints that can only pull and not push, while general parallel robots have actuators that
can provide bidirectional tension. In this class of robots, the cables must be in tension in the whole
workspace. Based on this fact, cable driven robots can be classified into two types; under con-
strained and fully constrained [5]. This paper is concerned about fully constrained cable driven
robots. A major challenge in mechanical and control design of this class of robots, is the nonlinear
behavior of the cables. Cables are usually flexible and have to encounter some unavoidable situa-
tions such as elongation because of the cable driven characters. This flexibility may lead to position
and orientation errors. Moreover, the system may lead to vibration, and cause the whole system to
be uncontrollable. Vibration of a cable driven robot may be a concern for some applications which
require high bandwidth or high stiffness of the system [7]. Though, the cable characteristics have
been studied from long time ago, especially in civil engineering, using cables in parallel robots
demonstrates a quite new application. Generally, in civil engineering cables are heavy and bulky
materials, whose static analysis is studied in order to stabilize the bridge type structures [8, 9].
However, in cable driven robots the cables are very light, and the motion of the end-effector is
generated by change of length of the cables. Because of this new application and research trend,
reported studies on the effect of cable flexibility on modeling, optimal design and control of such
manipulators are very limited and usually neglected.

Stiffness analysis of the cable robots with flexible cables, may be seen in Behzadipour’s and
Kozak’s works [10, 11]. Behzadipour introduced a four springs model for cable and achieves
necessary and sufficient conditions for stability of system based on positive definiteness of the
robot stiffness matrix [10]. Kozak in [11], considers the mass of the cables and by using a static
model of cables shows how cable sagging affects the kinematics and stiffness of the system. In
[12], a static model of cable is proposed and static deformation of cables is achieved. The vibration
problem of cable driven robots has received less attention. To model the vibration due to flexibility
of cables, Agrawal has used wave equation to model the cable vibration, providing the cables
length are constant [13]. However in practice this assumption is not true for cable driven robots.
Kawamura et al. showed that the internal forces of cables can play a vital role in reducing the
vibration of the system [14]. To investigate the vibration analysis of cable driven robots, linear and
nonlinear springs are used to model the behavior of cables [12, 14]. But in all reported research, it
is assumed that cable has only axial flexibility and the transversal flexibility is ignored.

In the dynamic modeling of cable driven robots, this point should be noticed that a complete
dynamic model of cable robots is very complicated. Furthermore, since the obtained model should
be used in controller design strategies, such complicated models are useless for this objective,
although they can accurately describe dynamic intrinsic characteristics of cables. Thus, in practice
it is proposed to include only the dominant effects in the dynamics analysis. For this reason in
many robotics applications, cables mass have been neglected and cable has been considered as a
rigid element [15, 16]. With those assumptions the dynamics of cable driven robot is reduced to the
end-effector dynamics. However, in practice using this assumption will lead to some inaccuracies
in control especially the stability of the manipulator. In this paper a more precise model of the
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cable driven robot considering cable flexibility is derived and being used in the controller design
and stability analysis. Using natural frequencies of system, Diao and Ma have shown in [7], that
in fully constrained cable driven robots the vibration of cable manipulator due to the transversal
vibration of cables can be ignored in comparison to that of cable axial flexibility. In other words,
it has been justified to just model the cable as an axial spring in cable driven robots. By this
means, this model can describe the dominant dynamic characteristics of cable and can be used in
the dynamic model of cable robot. Based on this observation, in this paper axial spring is used to
model cable dynamics.

In this paper, considering axial flexibility in cables, a new dynamic model for fully constrained
cable driven robots is presented. In this structure the cables lengths with and without tension
are considered as the describing states in the model. By using the obtained model, the control
of the system is studied, while keeping the cables in tension is a critical point, which is well
addressed in the proposed control strategy of the system. Next, the stability of the system is
analyzed through Lyapunov second method, and it is proven that the closed–loop system with
the proposed control algorithm is stable. Finally the performance of the proposed algorithm is
examined through simulation.

2 DYNAMICS ANALYSIS

2.1 Robot Dynamics with Ideal Cables

In this section let us first assume that the mass and the flexibility of the cables can be ignored, since
they are much smaller and lighter than other mechanical parts. With this assumption the dynamics
of cable driven robot reduces to that of the end-effector. Therefore, the dynamics of system can be
expressed by the following vector equation [15, 16]:

M(x)ẍ+N(x, ẋ) = JT τ (1)

in which,
N(x, ẋ) = C(x, ẋ)ẋ+G(x) (2)

and,
M(x): Mass matrix of the system, C(x, ẋ)ẋ: Coriolis and centrifugal terms, G(x): Vector of
gravity terms, J : Jacobian matrix of system and x: Vector of generalized coordinates.
On the other hand, the actuators dynamics is represented by

Iq̈ +Dq̇ + rτ = u (3)

Where,
q: Angles vector of motors shaft, I: Actuator moments of inertia matrix, D: Actuator viscous
friction matrix, r: The radius of drums, τ : Cable tension vector and u: Motor torque vector.
As for the position reference, define all q to be zero when the end-effector centroid is located at
the center of the frame; from this configuration positive angle q will cause a change ∆L in cable
lengths, therefore, we have:

rq = ∆L = L− L0 =⇒ q = r−1(L− L0) (4)
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By differentiating and using manipulator Jacobian definition L = Jẋ:

q̇ = r−1L̇ = r−1Jẋ , q̈ = r−1Jẍ+ r−1J̇ ẋ (5)

Using equations (5), (3) and (1) and some manipulations we can show that:

Meq(x)ẍ+Neq(x, ẋ) = JTu (6)

In which,

Meq = rM(x) + r−1JT IJ
Neq = rN(x, ẋ) + r−1JT IJ̇ẋ+ r−1JTDJẋ (7)

It can be seen that actuator dynamics is transferred to Cartesian space by Jacobian matrix, which
is a projection from length space to Cartesian space.

2.2 Robot Dynamics with Real Cables

In the parallel cable driven robots, each cable is rolled by a pully which is driven by an electric
motor with gears. As it is said before, in order to remedy the vibration problem, elasticity of ca-
bles must be considered [7, 14]. In this type of robots when the flexibility in cables is considered,
actuator position (motor rotation for opening the cable) is not directly related to end-effector posi-
tion. Thus for such models, position of actuators and position of end-effector may be considered
as vector of system states. In other words, both the cable lengths before tension and the cable
lengths after tension (that are related to end-effector position by Jacobian matrix), may be used as
independent variables in order to analyze the dynamics of the manipulator. New research results
have shown that in fully constrained cable robots, dominant dynamics of cables are longitudinal
vibration [7], therefore, axial spring model can suitably describe the effects of dominant dynamics
of cable.

In order to model a general cable driven robot with n cables assume that: L1i : i = 1, 2, ..., n
denotes the length of ith cable with tension and L2i : i = 1, 2, ..., n denotes the length of the ith

cable without tension. If the system is rigid, then L1i = L2i ,∀i.

L = (L11, L12, · · · , L1n, L21, L22, · · · , L2n) = (LT
1 , L

T
2 ) (8)

Furthermore, if the flexibility is modeled with a linear axial spring with constant ki, then the
potential energy of system can be expressed by: P = P0 + P1. In this equation P0 is the potential
energy of rigid robot and P1 is the potential energy of cable. Using linear axial spring model for
cable, the total potential energy of a cable is

P1 =
1

2
(L1 − L2)

TK(L1 − L2) (9)

where, K is the stiffness matrix of cables. Kinetic energy of system is

K =
1

2
ẋTM(x)ẋ+

1

2
q̇T Imq̇ (10)
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In which x is the generalized coordinate in cartesian space, q is the motor shaft position vector,
M(x) is the mass matrix and Im is the actuator moments of inertia. The lagrangian is expressed by

L = K − P =
1

2
ẋTM(x)ẋ+

1

2
q̇T Imq̇ − P0 −

1

2
(L1 − L2)

TK(L1 − L2) (11)

The equations of motion of the system can be written using Euler-Lagrange formulation:

d

dt
(
∂L
∂ẏi

)− ∂L
∂yi

= Qi (12)

The final equation of motion can be written in the following form:

M(x)ẍ+N(x, ẋ) = JTK(L2 − L1) (13)
Imq̈ + rK(L2 − L1) +Dq̇ = u (14)

in which,

N(x, ẋ) = C(x, ẋ)ẋ+G(x) , L2 − L0 = rq

In these equations L̇1 = Jẋ, and furthermore:
x: Vector of generalized coordinates, q: Vector of angles of motors shaft, K: Stiffness matrix
of cables, J : Jacobian matrix, M(x): Mass matrix of the rigid system, C(x, ẋ)ẋ: Coriolis and
centrifugal terms, G(x): Vector of gravity terms, Im: Actuator moments of inertia matrix, D:
Actuator viscous friction matrix, r: The radius of drums and u: Motor torque vector.
Equations (13) and (14) represent cable driven robot as a nonlinear and coupled system. This
representation includes both rigid and flexible subsystems and their interactions.

3 CONTROLLER DESIGN

3.1 Internal Forces

In cable driven robot end-effector is suspended by cables. However, since cables can provide only
tension, actuator redundancy is necessary due to unidirectionality of cable tension. Such redundant
actuation for a cable driven robot is similar to the actuation of the multi-fingered robots of which
contact between fingers and an object is regarded as frictionless points. Therefore, it is possible to
apply the concept of ”Vector Closure” which was mentioned in the research of multi-finger robots
to parallel cable driven robots. Generally, Vector Closure is expressed in the following way [17]:
In an n-dimensional space, a set of vector JT is a vector closure if and only if JT has a least n+1
vectors (j1...jn+1) satisfying the following two conditions:
1) Each set of n vectors in n+ 1 vectors is linearly independent.
2) A vector β = (β1...βn+1)

T exists, that satisfies

n+1∑
i=1

jiβi = 0n×1 (15)

in which, each element of the vector β has the same sign (positive or negative),
βi > 0 ( for any i) or βi < 0 ( for any i).
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It is well known in parallel robots that Jacobian transpose relates the resultant forces f applied
on the end-effector to the cable tensions τ [18]:

f = JT τ (16)

where the matrix JT denotes Jacobian transpose matrix and may be expressed by its columns as :
JT = [j1, j2, ..., jm]. The Vector closure conditions mean that each cable tension remains positive
and any resultant force vector can be generated. This result implies that at least n + 1 cables are
necessary to realize the motion with n degrees of freedom. Since in cable driven robots actuator
redundancy is a requirement, the number of the cable actuators are greater than the degrees of
freedom, and therefore, the Jacobian matrix is not square. The inverse relation to calculate the
tension in cables from the resultant force using pseudo inverse may be given by:

τ = J†f + (I − J†JT )c (17)

In which, J† denotes the pseudo inverse of the matrix JT . The second term is generated from the
null space of JT which can be considered as internal forces among the cables. Notice that since
the internal force lies in the null space of JT it does not contribute into the driving force to the end-
effector, and it only produces tension in cables in order to keep all the cables in tension. Internal
force plays an important role in our proposed control algorithm.

3.2 Control Algorithm in Cable Length Space

In this section proposed control algorithm in cable length space is discussed. In this algorithm
we use internal forces to ensure that all cables are in tension. A cable driven robot must satisfy
this condition in its whole workspace. By using desired set point vector qd, the control input u is
proposed to be:

u = Kp(qd − q)−Kv q̇ +Q+ rQG +Ks(L̇2 − L̇1) (18)

where, Kp(n × n) [n is the number of cables], Kv(n × n) and Ks(n × n)) denote feedback gain
matrices. The term Q(n× n) denote internal force vector and satisfy

JTQ = 0 (19)

It is important to note that the vector Q does not contribute into motion of the end-effector, and
only causes internal forces in the cables. This term ensures that all cables remain in tension in
the whole workspace. Moreover, this term increases the stiffness of the system, and as a result,
minimizes the vibration in transversal direction of the cables. The term QG is added to compensate
the gravitational force. This vector must satisfy

JTQG = G(x) (20)

Furtheremore, L2 and L1 vectors are cable lengths without and with tension, respectively. L2 is
measured by shaft encoder in the side of motor and related to q by rq = L2 − L0. L1 show cable
lengths when cables are in tension and is measured by pot strings. In the following section we
discuss the stability of the closed–loop system based on this proposed control algorithm.
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3.3 Stability Analysis

To show that the control law given in equation (18) achieves set point tracking, consider the fol-
lowing Lyapunov function:

V =
1

2
q̇T Imq̇ +

1

2
ẋTM(x)ẋ+

1

2
(L1 − L2)

TK(L1 − L2) +
1

2
(qd − q)TKp(qd − q) (21)

The Lyapunov function is generated using the total energy in the system. Since qd is constant, the
time derivative of the Lyapunov function V is given by:

V̇ = q̇T Imq̈ + ẋTM(x)ẍ+
1

2
ẋTṀ(x)ẋ+ (L1 − L2)

TK(L̇1 − L̇2) + (qd − q)TKp(−q̇) (22)

Substitute equation (13) and (14) and proposed control effort (18) in (22) :

V̇ = q̇T
[
Kp(qd − q)−Kv q̇ +Q+ rQG +Ks(L̇2 − L̇1)

]
− q̇TDq̇ − q̇T rK(L2 − L1)+

ẋT
[
JTK(L2 − L1)− C(x, ẋ)ẋ−G(x)

]
+ 1

2
ẋTṀ(x)ẋ

+(L1 − L2)
TK(L̇1 − L̇2)− (qd − q)TKpq̇

To simplify this equation, use the robot mass matrix property [18]:

ẋT (Ṁ(x)− 2C(x, ẋ))ẋ = 0 (23)

Therefore,

V̇ = −q̇TKv q̇ − q̇TDq̇ + q̇T (Q+ rQG)− ẋTG(x) + q̇TKs(L̇2 − L̇1)+[
ẋTJTK(L2 − L1)− q̇T rK(L2 − L1) + (L1 − L2)

TK(L̇1 − L̇2)
]

(24)

Notice the Jacobian mapping between L̇1 and ẋ and the kinematics relation between L̇2 and q̇,

L̇1 = Jẋ , L̇2 = rq̇ (25)

Substitute these relations into (24) and simplify:

V̇ = −q̇T (Kv +D − rKs)q̇ + q̇T (Q+ rQG)− ẋT (G(x) + JTKsq̇) (26)

By choosing large enough value for Kv and appropriate value for Ks, the above analysis shows that
V is negative definite as long as q̇ is not zero. This by itself is not sufficient to prove the desired
stability result, since manipulator can reach a position where q̇ = 0 but q ̸= qd. To show that this
cannot happen we show that when q̇ = 0 then G(x) = 0 and therefore V̇ = 0. Then LaSalle’s
theorem is used to show that q tend to qd.
Suppose q̇=0. Then q̈ = 0 and from relations (18) and (14)

u = Kp(qd − q) +Q+ rQG −KsL̇1

K(L2 − L1) = r−1u = r−1[Kp(qd − q) +Q+ rQG −KsL̇1]
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Therefore, the equation (13) can be rewritten in the form

M(x)ẍ+ C(x, ẋ)ẋ+G(x) = r−1JT [Kp(qd − q) +Q+ rQG −KsL̇1]

Use relations (19) and (20) and simplify:

M(x)ẍ+ C(x, ẋ)ẋ = r−1JT [Kp(qd − q)−KsL̇1] (27)

As we see in equation (27), G(x) = 0 and thus V̇ = 0. Based on LaSalle’s theorem we know that
the motion converges to a maximum invariant set which satisfies V̇ = 0. In this case the maximum
invariant set is the responses of system (27). To show that ẋ will tend to zero, we should prove that
the above system (27) is asymptotically stable. Consider a Lyapunov function as follows:

W =
1

2
ẋTM(x)ẋ+

1

2
(qd − q)TKp(qd − q) (28)

The time derivation of W is given by

Ẇ = ẋTM(x)ẍ+
1

2
ẋTṀ(x)ẋ+ (qd − q)Kp(−q̇) (29)

By substituting equations (27) and q̇ = 0, we obtain

Ẇ = ẋT [r−1JTKp(qd − q)− r−1JTKsL̇1 − C(x, ẋ)ẋ] +
1

2
ẋTṀ(x)ẋ (30)

Moreover, from relations (23) and (25) the above equation can be rewritten into

Ẇ = −r−1ẋTJTKsJẋ+ r−1ẋTJTKp(qd − q) (31)

Define Ks = ksIn×n with ks > 0, therefore matrix JTKsJ is positive defenite. By choosing
appropriate values for Ks and Kp, system (27) is stable. Thus, ẋ will tend to zero.
In this case by choosing appropriate gain matrices in proposed controller, we proved that V̇ is zero
when q̇ = 0 and as a result ẋ = 0 and hence q̈ = ẍ = 0. Therefore, from the equations of motion
(13) and (14) with our proposed control (18) we must have

JTKp(qd − q) = 0 (32)

This equation can have both a trivial solution (Kp(qd−q) = 0) and a non-trivial solution (Kp(qd−
q) ̸= 0), because of the non-square matrix JT . In the case of non-trivial solution, the motion stops
at some point q0 which is not equal to qd. However, from Result 1 and Result 2 obtained from [14]
based on vector closure, it is understand that the non-trivial solution cannot exist. Therefore, we
conclude

q = qd (33)

as time t tends to infinity as long as the motion is within the vector closure space.
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4 SIMULATIONS

A simulation study has been performed in order to verify the effectiveness of the proposed control
algorithm. In the following simulation study, the results of the closed loop performance of planar
cable driven manipulator examined. Our model of a planar cable robot [19] consists of a moving
platform that is connected by four cables to a base platform shown in Fig. 1.

4.1 Kinematics and Jacobian

For kinematic analysis, as it is shown in Fig. 1, a fixed frame O : xy is attached to the fixed base
at the point O, the center of the base point circle which passes through Ai. Moreover, another
moving coordinate frame G : UV is located on moving platform at its center of mass G. Assume
that the point Ai lies at the radial distance of RA from point O, and the point Bi lies at the radial
distance of RB from point G in the xy plane, when the manipulator is at central location. For
inverse kinematics analysis, it is assumed that the position and orientation of the moving platform
X = [xG, yG, ϕ]

T is given and the problem is to find the length variable of the manipulator l =
[l1, l2, l3, l4]

T . Let’s define the instantaneous orientation angle of B,
is:

ϕi = ϕ+ θBi

With some manipulation we can show that [19],

li = [(xG − xAi
+RBcos(ϕi))

2 + (yG − yAi
+RBsin(ϕi))

2]
1
2

For the geometry of the manipulator as illustrated in Fig. 1, the manipulator Jacobian matrix J is,

J =


S1x S1y E1xS1y − E1yS1x

S2x S2y E2xS2y − E2yS2x

S3x S3y E3xS3y − E3yS3x

S4x S4y E4xS4y − E4yS4x

 (34)

Note that the Jacobian matrix J is a non-square 4× 3 matrix, since the manipulator is redundantly
actuated.

4.2 Control

The equations of motion for the end-effector can be written in the following form [20],

MẌ + G = F , X = [xG, yG, ϕ]

In which, by considering flexibility in the cables,

F = JTK(L2 − L1) , L2 = rq + L0

Imq̈ +Dq̇ + rK(L2 − L1) = τ

In which,

M =

 m 0 0
0 m 0
0 0 Iz

 and G =

 0
−mg
0
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Figure 1: (a): The schematics of planar cable mechanism (b): Vector defenitions for jacobian
derivation

Whose parametric values are Im = I4×4 , D = 0.3 I4×4 , r = 1 , K = 100 I4×4 , m = 2 , Iz = 0.5.
To show the effectiveness of the proposed control algorithm suppose that we want to move the
system from initial position L2 = [2, 1, 3, 4] to a fixed position L2 = [5, 2, 6, 8]. The controller is
based on equation (18) and consists of four parts. Controller gain matrices are chosen as Kp =
500I , Kv = 100I and Ks = 25I . As illustrated in Fig. 2, the results are satisfactory and the
controller achieves the desired steady state values with small errors. This simulation verifies the
guaranteed stability of the proposed controller in presence of flexibility in the cables.

5 CONCLUSIONS

In this paper modeling and control of cable driven robots with cable flexibility are examined in
detail. In the modeling of this kind of manipulators cables are modeled by linear axial spring, and
the model of fully constrained cable driven robot is derived using Euler-Lagrange approach. Since
in such robots cables must remain in tension in the whole workspace, the notion of internal force
is introduced and directly used in the proposed control algorithm. The proposed control algorithm
is designed in cable length space and consists of four parts. A simple PD control on the tracking
error, the internal force that ensures us all of the cables are in tension, a gravity compensation term
and damping term. Then, the stability of the closed-loop system is analyzed through Lyapunov
second method, and it is shown that the proposed controller is capable to stabilize the system with
flexible cables. Finally the performance of the proposed controller is examined through simulation.
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