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Abstract 
In this paper the dynamic analysis of cable-driven parallel manipulators (CDPMs) is performed using 

Lagrange formulation.  The effect of entering mass stream to the system caused by elongation of the 

cables is treated by using Lagrange variable mass formulation. By these means, a complete dynamic 

model of the system is derived, while the compact and tractable closed-form dynamics formulation is 

preserved.  In this treatment, first a general formulation for a general CDPM is given, while the effect of 

change of mass in the cables is integrated into its dynamics. The significance of such treatment is 

appreciated in a complete analysis of the dynamics, vibrations, stability of such systems, and in any 

robust control synthesis of such manipulators. The formulations obtained for such system is applied to a 

typical planar CDPM. Through numerical simulations the validity and integrity of the obtained 

formulations are firstly verified, and then significance of variable mass treatment in such analysis is 

examined. For this example, it is shown that the effect of entering mass stream into the system is not 

negligible, while it is non-linear and strongly dependent to the geometric and inertial parameters of the 

robot, as well as the maneuvering trajectory. 

Keywords: cable-driven parallel manipulator (CDPM), variable mass Lagrange formulation, closed-

form dynamics. 
 

APPLICATION DE LA MÉTHODE DE LAGRANGE POUR LA MODÉLISATION DES 

ROBOTS À CABLES : UNE FORMULATION À MASSES VARIABLES 

Résumé 
Dans cet article, la modélisation dynamique des manipulateurs parallèles à câbles est présentée. L’effet 

de la variation de la longueur des câbles est pris en compte grâce à la méthode de Lagrange pour des 

systèmes à masses variables. Le modèle dynamique obtenu se présente alors sous sa forme compacte. 

Cette modélisation est importante pour étudier en détails la dynamique du système aussi bien que pour 

des études de vibration, de stabilité et de conception de système de commande robuste. Un exemple de 

modélisation d’un manipulateur à câble de type planaire est également présenté en détails. Grâce à des 

simulations numériques, la validité et l’intégrité de la formulation obtenue sont d’abord vérifiés. 

Ensuite, l’effet de la variation de la masse est examiné. Pour ce faire, des simulations avec et sans l’effet 

de la variation de la masse sont considérées et les résultats sont comparés. Il est montré que pour 

l’exemple présenté, l’effet de la variation de la masse ne peut pas être négligé. Cette effet est non-

linéaire et dépend fortement de la géométrie du manipulateur ainsi que de la trajectoire du robot. 

Mots-clés : Robots parallèles à câbles; Lagrange pour les masses variables; Dynamique de chaînes 

mécaniques fermées. 
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1 INTRODOUCTION 

 
The equations of motion of the constant mass systems can be derived using different classical 

approaches such as Newton-Euler, Lagrange, virtual work, or Kane's formulations. These basic 

principles of classical dynamics are usually treated for systems comprising definite number of objects 

with constant masses  [1].  These methods can be extended for cases, in which the masses of the system 

components are changing. Such complete treatment of dynamic analysis of systems with variable mass 

is a challenging problem. The difficulties arise from the fact that in such mechanisms, the mass, the 

center of mass and the moments of inertia may vary by overtaking or expelling a stream mass at a non-

zero velocity. Consequently the mass that is overtaken or expelled from the system may change the 

linear and angular momentum of the overall system [2]. The dynamics of variable-mass systems have 

been studied for a very long time. In the applied mechanics “Continuously mass variable systems”, such 

as rockets were among the first applications of variable mass systems [3], and usually the first works 

reported in this area are mostly related to these applications. Meshchersky was among the first scientists 

that realized the foundation of modern dynamics of a rigid body with variable mass [4]. On the other 

hand, in robotics applications, robots that pick up lifting objects may be treated by varying mass 

dynamics. Representatives of such analysis may be named as the work that has been done by McPhee 

(1991) in dynamics analysis of multi-rigid-body variable mass systems [5]. Furthermore,  Djerassi 

(1998) [6], reported similar works in such robotics applications. The most recent works reported in the 

area of variable mass system is performed by Cveticanin [2, 4, 7-10]. She carefully studies the dynamics 

of body separation and developed an analytical procedure to determine the dynamic parameters of the 

remaining body after mass separation [10]. This method is based on the general principles of 

momentum and angular momentum of a system of bodies. She has also extended the Lagrange 

formulation for the systems of varying mass [2]. In the latest reported work of  Cveticanin and Djukic, 

extended kinematic and dynamic properties of a body in general motion is elaborated [9] and the 

principle of linear and angular momentum conservation were modified to obtain the linear and angular 

velocity of the body during mass separation. 

Furthermore, the dynamics analysis of cable-driven parallel manipulators (CDPMs) shows inherent 

complexity due to their closed-loop structure and kinematic constraints. Although the dynamic analysis 

of such manipulators is essential for stability analysis and closed-loop control synthesis, there are few 

 
Figure 1. General structure of cable-driven parallel manipulators (CDPMs). 
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works reported in the dynamic analysis of cable driven parallel manipulators [11-14]. In CDPMs, the 

change of cable length will cause the effective mass of limbs to be continuously varying in time. 

Moreover, the varying mass in cables is a function of the position of the moving-platform.  In all works 

that have been reported in the dynamics of CDPMs, the effect of varying mass in cables is neglected 

due to the small changes of mass in the cables. However, in some applications such as in large adaptive 

reflectors used in the next generation of giant telescopes [12],  the length of cables can be as long as 

1000 meters, and the mass variation of cables plays a vital role in the dynamics of the manipulator. 

In this paper, the dynamic equations of CDPMs will be discussed in detail by Lagrange formulation and 

a set of compact and closed-form formulations are obtained. Furthermore, the effect of varying mass in 

cables is carefully analyzed in the dynamics of the manipulator. Finally, this general formulation is 

adopted for a typical planar CDPM, for which a simulation study is performed. It is shown that in that 

case the effect of entering mass stream into the system is not negligible, while it is non-linear and 

strongly dependent to the geometric and inertial parameters of the robot, as well as the maneuvering 

trajectory. 

2 KINEMATICS ANALYSIS OF CDPM  

 
The general structure of CDPMs that is used in this paper is shown in figure 1. In this manipulator the 

moving platform is supported by   limbs (cables) of identical kinematic structure, while the limbs are 

considered as rigid slender rods for the sake of dynamic analysis. The kinematic structure of the limb 

may be considered as spherical-prismatic-spherical, in which only the prismatic joint is actuated 

(commonly denoted as SPS). The kinematic structure of a prismatic joint is used to model the 

elongation of each link. As it is shown in figure 2,    denote the fixed base points of the cables,     

denote the attachment point of the cables to the moving platform, and           denote the 

vector of cable lengths. Moreover, the position vector of the moving platform frame     as well as the 

cable frame       are defined as    
   

  
 

 , in which,    denotes the position of moving platform 

according to the base frame {0} and        
     

    denotes the vector of the cable coordinates 

where    
  is the position of the  cable  center ci  according  to the base  frame (see figure 2). Similarly, 

the angular coordinate of the moving-platform     and the cables      relative to the base frame are 

defined as    
   

  
 
 , in which,          are any user-defined Euler angles of the moving 

platform and       
    

   is the angle vectors of the coordinates attached to the center of the 

 
Figure 2. A single limb in a cable-driven parallel manipulator. 
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cables. Subsequently, each angle vector is defined by its three Euler angles             
 . 

Accordantly, we consider the following rotation matrices: 

                

                  
. 

(1) 

As explained in [12], [15], and [16], inverse kinematics of CDPMs, like any other parallel manipulator, 

can be obtained by writing the loop-closure equations. These equations allow all coordinates of the 

system to be expressed as function of the generalized coordinates. By choosing      
   

  
 
    

(moving-platform position and orientation) as generalized coordinates, one obtains: 

                                    (2) 

where   ,   and    are kinematic equations obtained from the loop-closure. Time derivative of (2) may 

lead to a relation that expresses the linear and angular velocities of the cables as well as the time 

derivative of the cable lengths as function of the linear and angular velocities of the moving platform: 

 
   
  

   
            
            

  
   
  

                    
   
  

 , (3) 

where    ,     ,     and     are Jacobian matrices       and     are the linear velocities of the cables and 

the moving-platform respectively, and    and    are the angular velocities expressed in the cables and 

moving-platform frame respectively. In order to eliminate the velocities of the cable into the Lagrange 

formulation presented below, (3) is used by collecting all linear velocities of the cables and the moving-

platform as function of only the linear and angular velocities of the moving-platform: 

 
   
   

   
  

            
  

   
  

 . (4) 

Similarly, the angular velocities of the cables and the moving-platform are rewritten as: 

 
  

  
   

  
            

  
   
  

 . (5) 

By convenience to the Lagrange formulation, (4) and (5) can be expressed as function of the derivative 

of the generalized coordinates. In order to do that, the following relation between the derivative of the 

Euler angles and the angular velocity can be established [15]: 

            . (6) 

This equation can then be used to rewrite (4) and (5) as: 

 
   
   

   
  

                    
   
   

         , (7) 

 
  

  
   

       

                  
  

   
   

         . (8) 

3 KINETIC ENERGY OF CDPM 

 
In order to derive the kinetic energy of the system, the kinetic energy of the robot components are 

derived and added. A CDPM consists of a moving-platform and several limbs, in which the limbs are 

modeled as rigid slender rods. Therefore the mass of all objects in the mechanism can be expressed as: 

      
   

      
 , (9) 

in which,   and    denote the mass matrices of the moving platform and all the cables, respectively: 

    

    

    

    

   ,            
           

   
           

  . (10) 
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In this definition,    is the moving-platform mass and     is the mass of the cables expressed as 

function of its density    and its lengths li as follows: 

           . (11) 

Similarly, the moment of inertia of all components of CDPM can be collected into: 

      
   

      
 , (12) 

where    and    are the inertia matrices of the moving-platform and the cables, respectively given by: 

    

         
         

         

          
         

   
         

 . (13) 

Since the cables are modeled as slender rods, the moment of inertia of the cables     is defined as:  

        
  

  
 
   

   

    
  

   

 . (14) 

According to (2), li can be expressed as function of the generalized coordinates. Thus, the total kinetic 

energy for all components of a CDPM can be expressed as: 

  
 

 
  
   
   

 
 

      
   
   

   
  

  
 
 

      
  

  
  . (15) 

The substitution of the Jacobian matrices defined by Equations (7) and (8) leads to: 

  
 

 
         , (16) 

where the mass matrix of the system is given by: 

       
                

             . (17) 

4 VARIABLE MASS LAGRANGE APPROACH 

 
In this section, the dynamics of cable-driven parallel manipulator is obtained by the variable mass 

Lagrange formulation.  As the length of the cables in CDPM is a function of the moving-platform 

position, the cable mass changes in time. In fact, the mass that is added to or departed from the system 

will add or separate a momentum to the system. The Dynamics of mechanism with variable mass is 

discussed in detail by Cveticanin in [2], in which the Lagrange formulation is extended to: 
 

  
  

  

   
 
 

–  
  

  
 
 

            
. (18) 

In this formulation,   and    , are the generalized forces caused by non-conservative and conservative 

external forces acting on the system, respectively. Furthermore        
 accounts for the effect of 

changing mass in the system. In other words,     
 is an impact force that is caused by the mass stream 

entering into or expelling from the system, and is a function of the mass variation and its relative 

velocity. Furthermore,   accounts for the direct energy that is added or removed to the system by entry 

or departure of the stream mass.  

4.1 Kinetic Energy Terms 

 
Let us examine the required terms of the Lagrangian formulation for CDPM. As usual the first two 

terms can be derived from the kinetic energy of the system given by (16): 
 

  
  

  

   
 
 

–  
  

  
 
 

               
 

 

 

  
            , (19) 

where       is the time derivatives of the terms given by (17).   
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4.2 Generalized Forces 

 

As explained in the extended Lagrange formula,      and   are respectively, the generalized forces 

caused by non-conservative, and conservative external forces acting on the system. The generalized 

force acting on the system caused by external non-conservative forces are composed of the following 

two elements: 

        , (20) 

where    is the wrench (forces and torques) corresponding to the projection of the actuator forces 

(cable force) on the platform and     is the external forces and torques acting directly on the moving-

platform. According to the principle of virtual work and the Jacobians given by (3) and (6), the vector 

    can be obtained by projection of the actuator forces into the Cartesian space, using the manipulator 

Jacobian matrices as: 

                              
     , (21) 

where   denotes the vector of the actuator forces (cable forces). The contribution due to the gravity 

forces may be expressed as the following potential energy: 

                    

 

   

   (22) 

where   is the gravity vector represented in the base frame and    is the position vector of the moving 

platform. According to [2], the potential energy can be expressed as function of the generalized 

coordinates. Therefore,      is obtained by partial derivative of the potential energy with respect to the 

generalized coordinates: 

      
  

  
   (23) 

4.3 Variable Mass Terms 

 
The formulation proposed for varying mass mechanism in [2] is defined for particle mass system. 

However, the additional terms caused by the variable mass are only function of mass derivatives (small 

variation of mass divided by small variation of time). For this reason and because these variations are 

continuous, the mass derivative acts as particle, even for body systems. This interpretation has already 

been considered in [2, 17] for the analysis of the vibration of varying mass mechanisms (see also [4]). 

As discussed in [2], the effect of changing mass in the system is caused by the variable momentum. 

This effect can be divided into the impact forces denoted by    
   and the energy that added or departed 

from the system by variable mass denoted by  . Since cables are the only source of the variable mass 

and the variation is only function of the generalized coordinates,    can be determined by [17] : 

          
 

 
  

       

   
  

 

 

   

    (24) 

where vi is the velocity of the variable mass   and   denote individual generalized coordinates. 

According to figure 1, this mass variation is located at the beginning of the cable i and its velocity is in 

only one direction when it is expressed in the frame of the cable. For this reason, vi can be considered as 

a scalar given by    . Then, by using (2) and (11), (24) can be rewritten as 

          
 

 
    

    
   

 
    
  

   
  

   

  (25) 

On the other hand, the effect of the impact forces   
  

can be obtained from  [17]: 
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  (26) 

where     is the velocity of the expelled or gained mass and p is the position of this mass variation. This 

variation is also located at the beginning of the cable i and its position variation as well as its velocity is 

in only one direction when they are expressed in the frame of the cable. For this reason, voi and the 

variation of    can be interpreted as scalars, respectively given by     and        . Then, by using (2) 

and (11), (26) can be rewritten as 

  
  

           
    
  

   
     
   

 

 

   

  (27) 

Then,   and   
  

 can be combined as 

            
  

       
 

 
   

    
   

 
    
  

   
 

 

 

   

  (28) 

4.4 Final Dynamics Equations 

 
From Equations (17), (18), (19), (21),(23) and (28), the general form of the dynamics of CDPM can be 

released in compact standard form as: 

                               , (29) 

where   is given by (17),   is given by (23),    is defined by (21) and   is given by 

               
 

 

 

  
                         

         (30) 

where each elements of d +    
are given by (28). In (30), D is the mass matrix,   is the vector of 

centrifugal, Coriolis and mass variation terms and G is the vector of gravity terms. Finally     is the 

external wrench vector acting directly on the moving-platform. 

5 CASE STUDY 

 
In this section, the dynamics of planar CDPM discussed in [12] (see figure 3) were considered. This 

 
Figure 3. Simple schematic of planar CDPM. 
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CDPM is a simplified planar version adopted from the structure of Large Adaptive Reflector (LAR). 

This structure consists of a parallel redundant manipulators actuated by long cables. The control 

objective in the simplified mechanism is to track the position and the orientation of the moving platform 

as desired in presence of disturbance forces, such as wind turbulence. The geometric and inertial 

parameters used in the simulations of the system are adopted from LAR design. In this way, the length 

of the cables is in the order of 900 meters and the mass density of cables    is           . The main 

control purpose is the positioning of the moving-platform           which has the mass    

       . At first, the dynamics of the planar CDPM is obtained by the Lagrange method. Then, the 

effect of the variable mass in the cables is studied in detail. 

From the inverse kinematics analysis the length of the cable    and the angle    can be obtained easily 

by writing the loop closure equations: 

                   
                  

  
 
    

                                          . 
(31) 

Also by Jacobians analysis we have:  

    

 
 
 
 
 
       

       

    

    

   

    
 
 
 
 

     

 
 
 
 
 
               

               

               

                
 
 
 
 

, 

    
 

  
 
 
 
 
 
–        

–        

–    

–    

    

     
 
 
 
 

     
 

  
 
 
 
 
 
               
               

               

                
 
 
 
 

  

(32) 

where vectors   and    are defined as: 

                                     
 , 

                           
 . 

(33) 

Moreover for planar CDPM, we have       and therefore, Jacobian matrices are easily defined by 

Equations (7) and (8). Finally, by deriving Equations (17), (30) and (23), the mass matrix D , centrifugal, 

Coriolis and mass variation terms  , and the vector of gravity terms G are obtained. Thus the dynamic 

modeling of planar CDPM is expressed as: 

                                           , (34) 

  
Figure 4. Desired trajectory. 
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where   ,    and    form the wrench applied on the moving platform, defined by: 

                       . (35) 

In (35),      is the vector of the forces in links space or, in other words, the tensions in the cables that 

are generated by the actuators (motors). As the Jacobian matrix in redundant manipulator is non-square, 

tension in the cables can be obtained by Redundancy Resolutions (optimal distribution of forces in 

cables) algorithms [ [18], 19]. This resolution ensures positive tension in all cables. 

For simulation, a specific displacement of the moving-platform is chosen. This simple trajectory is 

shown in figure 4. Then, the forces in Cartesian space are obtained by the inverse dynamic model given 

by (34). These forces are compared with the forces obtained by the same simulation, in which the effect 

of variable masses in the cables is neglected. Figure 5 (a) shows forces and torque in Cartesian space. 

Figure 5 (b) shows the projected forces in links space. In other words, it shows the tensions in the 

cables which are defined by Equation (35) as                   
 . These forces were obtained by 

driving the numerical algorithm used to solve the “non-negative least-squares constraints problem” 

described in [19] and implemented in the Matlab optimization toolbox. As we expect from the dynamics 

equation analysis, the variable mass have an important effect in the dynamics of the manipulator. In 

application such as LAR project [12], the length and mass density of the cables are important. In this 

context, the variable mass of the cables plays a vital role in the dynamics of CDPM. Moreover, the 

effects of the variable mass in the cables are strongly dependent to the position and the velocity 

trajectories. This effect is non-linear and is dependent to the parameters such as the cables mass density, 

the mass of the moving-platform, and the kinematics structure. In fact, the additional effect of the 

variable mass is completely described by Equation (28). Therefore, this effect is directly proportional to 

the cable mass density   . This parameter could reduce the effect of the variable mass. However, this 

reduction would increase the flexibility of the cables, which is not necessarily a better thing. In addition, 

since       in Equation (2) is a kinematic function of the moving-platform position, the variable mass 

effect is strongly dependent to the size and the topology of the CDPM. 

 

 

 
(a) 

 
(b) 

Figure 5  (a) Forces and torque in Cartesian space (Moving-platform workspace). 

(b) Tensions in cables (Forces in joint space). 
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6 CONCLUSIONS 

 
This paper focused on the dynamics modeling of Cable-Driven Parallel Manipulators (CDPMs) by 

using Lagrange formulation. While in previous works the effect of entering mass stream to the system 

caused by elongation of the cables are neglected, in this paper, this effect is treated by using a Lagrange 

variable mass formulation. By this means, a complete dynamics of the system is derived, while the 

compact and tractable closed-form dynamics formulation is preserved.  In this way, at first a general 

formulation for a general CDPM is given, where the effect of mass variation in the cables is integrated 

into its dynamics. The significance of such treatment is appreciated in a complete analysis of the 

dynamics, vibrations, stability of such systems, and in any robust control synthesis of such 

manipulators. The general formulation is applied to a typical planar CDPM with cables of 900 meters 

length. Through simulations, the validity and integrity of the obtained formulation are firstly verified, 

and then, significance of variable mass treatment in such analysis is examined. It is shown that the 

effect of entering mass stream into the system is not negligible, while it is non-linear and strongly 

dependent to the geometric and mass parameters of the robot, as well as the maneuvering trajectory. 
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