Singularity Analysis of the 4-RUU Parallel Manipulator using Grassmann-Cayley Algebra

S. Aminé, M. Tale-Masouleh S.Card, P.Wenget, C. Gosselirt
Linstitut de Recherche en Communications et Cyétigine de Nantes, Nantes, France,
{semaan.amine, stephane.caro, philippe.weh@irccyn.ec-nantes.fr

2Département de Enie Mecanique, Universit Laval, Qébec, Canada,
mehdi.tale-masouleh.1@ulaval.ca, gosselin@gmc.uleaal

Abstract

This paper deals with the singularity analysisieDOF parallel manipulators with identical limb
structures performing Séhnflies motions, namely, three independent translatiodoae rotation
about an axis of fixed direction. Tliex 6 Jacobian matrix of such manipulators contains two lines
at infinity among its six Rlcker lines. Some points at infinity are thus introduced tanidate the
superbracket of Grassmann-Cayley algebra, which correlspgorthe determinant of the Jacobian
matrix. By exploring this superbracket, all the singulaggnditions of such manipulators can be
enumerated. The study is illustrated through the singylanalysis of the 4-RU parallel manip-
ulator.

Keywords: parallel manipulator, singularity, Séhflies motions, Grassmann-Cayley algebra, su-
perbracket.

Analyse de Singularies du Manipulateur Parallele 4-RJU au moyen de I'Algebre
de Grassmann-Cayley

Résune

Cet article traite de I'analyse des singuléside manipulateurs parmliksa quatre degss de liber
ayant des jambes identiquegrgrant des mouvements dits de 8ofiies, ca.d., trois translations
independantes et une rotation autour d'un axe de direction fizematrice Jacobienng x 6 de
ces manipulateurs contient deux ligriekinfini parmi ses six lignes de Btker. Quelques points
a l'infini sont ainsi introduits pour formuler le superbratkle I'algebre de Grassmann-Cayley qui
est correspond auéterminant de la matrice Jacobienne. En examinant ce gapkg, toutes
les conditions de singulaéis de ces manipulateurs peuvétreénunerées. Les contributions de
I'article sont illustéesa travers I'analyse de singuld@ du manipulateur parale 4-RJU.

Mots-clé: manipulateur paradle, singulariés, mouvements de Satflies, algbre de Grassmann-
Cayley, superbracket.
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1 INTRODUCTION

The singular configurations of Parallel Manipulators (PN83 critical poses characterized by
either the loss of some degrees of freedom (DOF), the gaimmisextra DOF or the loss of
stiffness. The determination of singular configuratiorthiss a central issue in robotics due to their
major effect on the robot performance [1, 2]. Lower-moitMs are suitable for a wide range of
applications that require fewer than six DOF. The clasgificeof singularities for lower-mobility
PMs has stimulated the interest of many researchers [3r-@)id paper, the classification proposed
in [4], which is similar the one proposed in [7], is adopted.cArdingly, a lower-mobility PM can
exhibit three different types of singularities) (imb singularities, {;) platform singularities [4],
also known as constraint singularities [8] and)(actuation singularities, also called architecture
singularities [7]. Constraint and actuation singulariaes referred to agarallel singularitiesand
are related to the rank deficiency of thex 6 Jacobian matrixd of the PM.

The determination of the parallel singularities of a PM astssin finding either the poses,
yielding the singularity locus, or the conditions, yielgithe configurations, for which becomes
rank-deficient. Generallyl expresses a system of screws or more preciseigkier lines. In this
paper,J is determined by using the theory of reciprocal screws [9—E&r most manipulators,
the determinant of such a matrix is highly nonlinear and etdyi to assess even with a computer
algebra system. Hence, linear algebra fails to providefsatory results, and therefore, the use
of Grassmann-Cayley Algebra (GCA) [2,13-15] or Grassmanmetty (GG) [1,16-18] can be
regarded as a promising solution. The GCA is a systematimapfrto obtain a bracket represen-
tation of the determinant af, calledsuperbracket By exploring this superbracket, it is possible
to obtain a vector form and a geometrical interpretatiorheffiarallel singularities. On the other
hand, GG is a geometric approach that provides a classiiic&dr the conditions under which a
set ofn Plucker lines spans a variety of dimension lower thaThis paper focuses on the appli-
cation of GCA to provide a compact vector expression for thgudarity locus of 3T1R PMs with
identical limb structures.

Schonflies Motion Generators (SMGs) [19] are manipulators grening three independent
translations and one rotation about an axis of fixed diractidhis type of motion is required
in a wide range of industrial pick and place operations sictha assembly of computer circuit
boards. The type synthesis of parallel SMGs with identizablstructures, performed in [12],
leads to four kinematic architectutest-RUU, 4-PUU, 4-RRUR and4-PRUR. For instance, as
an important criterion, the kinematic arrangemertsU andPUU require two links whereas the
other ones require at least three links. In this paper, was@n the singularity analysis of the
4-RUU PM based on GCA. The remainder of the paper is organized asvill First, the su-
perbracket decomposition of GCA and some fundamental cesmcéphe projective spade; are
recalled. Then, thé-RUU PM is presented and its constraint analysis is performedderdo de-
termine its Jacobian matrik A superbracket of the PM is then formulated. Finally, tmgsiarity
conditions of thet-RUU PM are enumerated and some singular configurations argalted.

IR, P andU stand for a revolute joint, a prismatic joint and a univejsait, respectively, while an underline is
used to denote the actuated joints.
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2 GRASSMANN-CAYLEY ALGEBRA

The GCA was developed by H. Grassmah®00—1877) as a calculus for linear varieties operating
on extensorsvith thejoin “Vv” and meet‘ A” operators. The latter are associated withgpanand
intersectionof vector spaces of extensors characterized by gtejp GCA makes it possible to
work at the symbolic level, and therefore, to produce cowtli-free algebraic expressions for the
singularity conditions of spatial PMs. For further detaitsGCA, the reader is referred to [2,14,20]
and references therein.

2.1 Superbracket decomposition

The rows of the Jacobian matrixof a PM are usually Ricker coordinate vectors of six projective
lines. The superjoin of these six vectorsHp corresponds to the determinantbtip to a scalar
multiple, which is the superbracket in GCAV'(?)) [20]. Thus, a singularity occurs when this
superbracket vanishes. The superbracket is an expresswining 12 points selected on the six
lines and can be developed into a linear combinatioR4abracket monomials [2, 21], each one
being the product of three brackets of four projective oint

[ab, cd, ef, gh, ij, k1] = Zyi 1)
where
y1 = —[abcd]|[efgi|[hjkl] = [abcd][efhi][gjkl] y3 = [abcd][efgj|[hikl]
yy = —[abcd][efhj][gikl] = [abce|[dfgh]|[ijk1] ys = —[abde][cfghl[ijk1]
y7 = —[abct][degh|[ijk1] = [abdf][cegh|[ijkl]  yy = —[abce|[dghi][fjk1]
Y10 = [abde][cghi] [f jk1] y11 = [abcf][dghi][ejkl]  yi12 = [abce][dghj][fikl]
1 = —[abat][cghi][e7k1] ys = —[abde]lcgnj][fik1] g5 = —[abct][dghs] eit1)
Y16 = [abdf|[cghj|[eikl]  yi7 = [abcg|[defi|[hjkl]  yi15 = —[abdg][cefi|[hjkl]

Y10 = —[abchl[defi][gjkl] ys = —[abcg][defj][hikl] yn = [abdh][cefi][gjkl]
Y22 = [abdg][cef j][hikl]  yp3 = [abch][defj][gikl] Y4 = —[abdh][cef j][gikl]

A bracket[abcd] is null if and only if (iff) the projective points, b, c andd are coplanar.

2.2 Projective space

The 3-dimensional projective spad® is characterized by the affine spaké in addition to the
plane at infinity(2... Itis noteworthy that the coordinates of a projective eletage determined up
to a scalar multiple. A projective point has four homogersemordinates whereas a projective line
has six Plicker coordinates represented by itdder coordinate vector. The following properties
highlight the relations between projective elements:

o Afinite point, 4, is represented by its homogeneous coordinates veetofa,, as, az, 1)7,
the first three coordinates being its Cartesian coordinat®s;i

¢ Afinite line, £, is represented by its Btker coordinates vectdr = (s; r x S); wheresis
the line direction, I{ x S) represents the moment gfwith respect to the origin andis the
position vector of any point og;

2011 CCToMM M Symposium 3



(a) CAD model. (b) Wrench graph 3.

Figure 1: A4-RUU PM.

e Let underlined points denote points at infinity. Any finitedi F' = (s; r x s), has a unique
point at infinity c = (s; 0). This point is determined by the line direction up to a scalar
multiple. Accordingly, ifa andb are two finite points ort’, thenc = b — a. Furthermore,
all finite lines of directiors intersect at one common point at infinity, namely,

¢ All finite planes of normal vectom, have a common line at infinity. This line is given by:
M = (0; m) and passes through the point at infinity of any finite line ogitnal tom;
e Two lines at infinityM; = (0; m;) and M, = (0; m,) intersect at a unique point at infinity
g = (my x my; 0).
3 JACOBIAN MATRIX OF THE 4-RUU PM
3.1 Architecture review and kinematic modeling

Figure 1(a) represents the CAD model aFRUU PM, which consists of a fixed base and a moving
platform connected to each other with four identiB&JU limbs. The input of the mechanism is

provided by four revolute actuators attached to the basemft2], the geometric characteristics
of each limb are:

1. Eachlimb is composed of five revolute joints such that dwed and the third ones, as well
as the fourth and the fifth ones, are built with intersecting perpendicular axes and are
thus assimilated tt-joints of central point$3; andC;, respectively;

2. The first, the second and the fifth revolute joints ofittle limb have axes parallel to a fixed
directionz. Letf; be the unit vector directed along lid¢ C;. Thus, the plan&; spanned by
the axes of the second and the last revolute joint§hasf,) = m, as normal vector;
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3. The third and the fourth revolute joints of théh limb have axes parallel tm; that changes
instantaneously. These axes form a pléhbaving(m; x f;) as normal vector.

3.2 Constraint analysis

Each limbl;, = R'U\U, (i = 1,...,4) of the4-RUU PM applies one constraint momehf, =
(0; m; x z) reciprocal to the twists associated with joiRts U’ andU}. Vectorsm; x z have a com-
mon orthogonal direction. Thus, in a non singular configuration, the four constrairgnehes\/;
form a2-systemi,,;, namely, the constraint wrench system of the PM:

The legs of thel-RUU PM can apply independently four constraint wrenches totloniy two
DOF. Thus, it is an over-constrained SMG. Moreover, the mg\latform cannot rotate about
an axis of direction orthogonal o It provides three independent translations and one ootati
about an axis of fixed direction By locking the actuator of theth limb, an additional constraint
appears, which is called the limb actuation wrench. It isegarceF; = (f;;ro, x f;) wheref;

is the unit vector of B,C; = P; N'V;) andr ¢, is the position vector of point;. In a non-singular
configuration, the actuation wrench system of the PM4ssgstem expressed as:

Wippy =SpantF;) ; i=1,....,4 (3)

Based on the constraint analysis, the row3d of the4-RUU PM can be composed of four indepen-
dent zero pitch wrenches withit},,;; plus two independent infinite pitch wrenches witiig, ;.
However, a parallel singularity occurs when the system sparmy the four actuation forces and
the four constraint moments become@ia< 6)-system.

4 LIMB SINGULARITIES

(a) A limb singularity, conditiorl.1 (b) A limb singularity, conditioriL.2

Figure 2: Limb singularities.
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The superbracket of a PM only provides information aboutphallel singularities. Thus, it
does not consider limb singularities. A limb singularitysisnilar to the singularity of a serial
manipulator. It occurs for th&-RUU PM when a limb kinematic screw system degenerates. This
happens for théth limb if the actuation forcé’; = (f;; r, xf;) crosses the axiy;, of the actuated
joint (the firstR-joint of the limb). In such a case, the limb actuation forcesas a constraint force
even without locking the limb actuator. Consequently, trafprm loses one DOF. Referring to
Fig. 1(a), this can occur upon two situations:

1.1 F; = (f;; re, x f;) crossed\; at a finite point, namelyy;. In that cased;C; || z as depicted in
Fig. 2(a). As a result, th&-RUU PM loses the translational DOF alofig

1.2 F; crossesA; at infinity, namely, at poinf = (z; 0). In such a case; || z as shown in
Fig. 2(b). Consequently, theRUU PM loses the translational DOF alomg

5 SINGULARITY ANALYSIS OF THE 4-RUU PM USING GCA

In order to formulate a superbracket expression ofitiRtJU PM, one must represent its different
wrenches irP; and then select two points on eacliéXer line ofJ. A finite line (pure force) could
be represented in the superbracket either by two finite panby one finite point and its unique
point at infinity. In turn, a line at infinity could be represed by two points at infinity. However,
the selection of the foregoing points must highlight as masipossible geometric (coincidence,
parallelism, orthogonality, intersection and so on) iela between the wrenches in order to obtain
a simplified expression of the superbracket.

As shown in Fig. 1(a), each actuation force of tARRUU PM can be expressed &s= (P;NV;),

i =1,...,4, planeP; being of normal(z x f;) = m; while planeV; is of normalm; x f;. On
the other hand, in a general case, two plaRgandP; (i # j) intersect at a finite line, namely,
T:;; = (P; nP;). Such a line is orthogonal to both vectars f; andz x f; and is thus directed
alongz. Therefore, fori # j, one can find a ling;; = (P; N P;) directed along and crossing
the two actuation forces; and F};. In this vein, leta andc be the intersection points @, with
Fy, and Fy, respectively. Likewise, le¢ andg be the intersection points @, with F; and Fy,
respectively.

On the other hand, let = (f;; 0), d = (f2; 0), £ = (f3; 0) andh = (f4; 0) be the points at
infinity corresponding to directiorfs, f,, f3 andf,, respectively. Accordingly, the four actuation
forces can be expressed as:

Fi=ab ; FI=cd

~= 9

Fys=ef ; F,=gh (4)

Now letx = (x; 0) andy = (y; 0). Hence, linexy collects all points at infinity corresponding

to directions orthogonal ta. Letj = (z 0), i = (my; 0), k = (My; 0), 1L = (m3; 0) andm =
(my; 0). Accordingly, the four constraint moments are expressed as

My=ij ; My=%kj ; Mz=1j ; My=mnj (5)

wherei, k, 1 andm belong to xy. A wrench graph, representing the projective lines assettia
with the wrenches of thé-RUU PM in P3, is given in Fig. 1(b).
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5.1 Superbracket decomposition

Due to the redundancy of constraints, a superbracket of-fR6U PM can be composed of the

four actuation forced’; (i = 1,...,4) in addition to two among the four constraint moments
. 4

expressed in Eq. (5). Thus, one can wr tg = (] = 6 superbrackets; (j = 1,...,6).

However, a parallel singularity occurs when the six pogsshiperbrackets vanish simultaneously.
For example, the superbrackgtinvolving the two constraint momenig andkj takes the form:

Sl - [aba eia Cga gha lla Kl] (6)

From Eq. (1),5; can be decomposed into a linear combinatior4bracket monomials, which
leads to only five non-zero monomials as follows:

Si= — [a [c gikj] —[abed|[fghj][c
- [a e [gikj]+[abfd]leghj][c (7

The bracket of four projective points is defined as the dateant of the matrix whose columns are
the homogeneous coordinates of these points. Accordiogiyhadgik j| = [eik j] = [ikj].
Furthermore, since points g andj belong to the same projective line, namely7g, the bracket
[egh j] is null and thereforefab f d][egh j][c ik j] = 0. Thus, Eq. (7) becomes:

o |+

jl+[abehl[fcdjllgikj]

0 |Q~
|

hj g ik
dj g ik j

= L)
ID" ID“
II—' Il-‘

e
£

Io‘ Io*
&

Si = [ikj] (~[abetlicdnj] - [abed]tghj] + [aben]ifcdj) — [abthllecaj])  (8)

On the other handf dh j| = 0. Moreover,[fdc j] = —[f |. Therefore
[abej|[fdhc|] = —[abef]lcdhj] —[abed|[fch ]|+ [abeh|[f cd j] (10)
As aresult, Eq. (8) becomes
S =[ikj] (fabejjfdnc] - [abshfecd;]) (12)
—— y

Obviously, in Eq. (11), termd; = [gik j| depends only on the chosen constraint moments
andkj whereas tern does not depend on the choice of poibtsndk. Consequently, tern is
a common multiple of the six possible superbrackets:

S;=A;B ; j=1,...6 (12)

whereA;, = [gikj], A2 = [gil]], A3 = [gim]j], Ay = [gkl]], A5 = [gkmj]and A =
[g1mj].
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(a) A constraint singular configuration. (b) A coupled motion.

Figure 3: Two critical configurations of theRUU PM.

5.2 Condition for constraint singularities

Constraint singularities correspond to the degeneracyeafdhstraint wrench system of the manip-
ulator. In such configurations, the manipulator loses soomstcaints and, as a result, its moving
platform gains one or several DOF. Accordingly, a constrsimgularity of the4-RUU PM occurs
when the four constraint momentg; (i = 1,...,4) form an < 2-system, i.e., when all terms
A; (7 =1,...,6) expressed in Eq. (12) vanish simultaneously. Let us censithcketg ik j|,
namely, termA4,. This bracket vanishes iff points k and j belong to the same projective line.
Since pointj corresponds to a fixed directian it is a fixed point. Pointa andk correspond to
two directions orthogonal toand, therefore, these points belong to a line that cannstthasugh
point j unlessi andk are coincident. Consequently, all termds vanish simultaneously iff points
i, k, 1, andm become all coincident. As a result, theRUU PM reaches a constraint singularity
iff:

My [| Mo [| Mg || my (13)
In such a configuration, the constraint wrench system of theipulator degenerates intola
system and the moving platform gains one extra DOF, nanfeydtation about an axis directed
along the common direction ofi; (i = 1,...,4), as shown in Fig. 3(a). In such a critical config-
uration, if the moving platform rotates about an axis of dii@n z, then the robot will come back
to a non-singular configuration.

On the other hand, in a constraint singular configuratiaimgfmoving platform rotates about an
axis of directionm;, the revolute joints attached to the moving platform willlonger be directed
alongz. As a consequence, the constraint wrench of each limb becamweench of finite pitch (a
combination of a force and a moment). In that case, the m@aifprm has neither pure constraint
moments nor pure constraint forces. Moreover, the limbsitam neither a pure rotation nor a
pure translation. Such a configuration is shown in Fig. 3(lo) @orresponds to @oupled motion
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Table 1: Actuation singularity conditions of tHeRUU PM.

Case Vector form Algebraic form

(@ |[fs f4 f=h

(b) ullz e, candj are aligned
(c) fy |l f d=b

(d) | (fsxfs) || (ux2) fh=uj

() | (faxfy) |l (uxz db=uj

U] (f3 x fy) || (f2 x 1) fh=db

@ | (fsxfy)[[(uxz)| (faxf)) |fh=uj=db

(h) (f3><f4)><(u><z)>L(f2><f1) (EhAuj) €db

5.3 Conditions for actuation singularities

In this paper, the actuation singularities correspond tdigarations in whichl is rank deficient
while the constraint wrench system does not degenerateichmenfigurations, the motion of the
moving platform becomes uncontrollable, namely, the dotgacannot control the motion of the
moving platform. According to Eq. (12), these singulastgre related to the vanishing conditions
of term B. In order to obtain geometric and vector conditions for astun singularities, tern# is
expressed in a more compact form by considering the follgwirmcket simplifications:

e [fdhc|]=[cdfh] =[adfh];

e Sincej =c—a,[abej]=[(c—j)bej|=[cbej]=[ecbj].
Accordingly,
B =[adfh|lecbj] —[abfh]lecd]]= [aéil_ﬂ[ecél] = (afh)A(ecj)A(db)  (14)

where the dotted letters stand for the permuted elementgpdaired in [14, 20]. An actuation
singularity occurs iff termB of Eq. (14) vanishes, namely, if the projective lifgb) crosses the
intersection line of plane@ £ h) and(e c j). It amounts to the following vector form:

ngu)xwng.azxny:o (15)

From Eqgs. (14) and (15), an actuation singularity of taBUU PM occurs upon each of the
following cases:

(a) Plane &£ h) degenerates, which happenstife h < f; || f4, i.e., the two actuation forces;
andF;, are parallel,

(b) Plane € c j) degenerates, which happens iff poiatsc andj are aligned. In that case,|| z,
i.e.,ﬂz = 754,
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(a) F1 andF; are parallel. (b) All actuation forces are coplanar.

Figure 4: Two actuation singular configurations of thBRUU PM.

(c) Line (db) degenerates, which happensdf= b, i.e., iff F; || F; as shown in Fig. 4(a);

(d) Plane @£h) coincides with planee(c j). Since pointa lies in plane ¢ c j), the condition
(afh) = (ecj)amountstqfh) = (uj). Inthat caseif; x fy) || (u x 2), i.e.,f;, f4, uand
z are orthogonal to a given direction;

(e) Line (ap) lies in plane ¢ £ h). In such a casgf, x f;) || (f; x fs). For example, if the four
actuation forces are coplanar, as shown in Fig. 4(b);

(f) Line (db) liesin plane é c j). In such a casef, x f;) || (U x 2);

(9) The intersection line of planes £ h) and ¢ c j) coincides with line { b). Since planesa(f h)
and g c j) contain pointa, they intersect at a line at infinity iff they coincide. Acdargly,
condition @) amounts tqfh) = (uj) = (db), i.e.,(f3 x f4) || (U x 2) || (f2 x fy);

(h) Let us consider the general case of Eq. (15), namely, thesextgon line of planesaf h)
and € c j) crosses linedb). If planes &£ h) and € c j) are not coincident (conditiody),
then they will intersect at a finite lin® of directionn = (f5 x f;) x (u x z). Thus, the point
at infinity,n = (n; 0), of line D is the intersection point of line< &) and { j). The finite
line D crosses linedb) iff n € (db). In that case, the lines at infinity 4), (db) and @ j)
intersect at point. As a resultn is orthogonal tqf, x f,), (f3 x f4) and(u x z). -

All possible cases of Eq. (15) are expanded in Table 1. Itishioeinoted that Eq. (15) is obtained
by considering two line$;, (crossingF; andF;) and7s4 (crossingFs andFy). Vectoru in Eq. (15)
could be written asi?3, i.e., the direction of a line crossing lings, and7z,. Accordingly, since a
line 7;; exists between each pair of forcEsand F;, the vector form of actuation singularities can
be generalized as follows:

<(fz- % 1) % (f m) o (UM x2) =0 (16)
2011 CCToMM M Symposium 10



Wh;;?(i, g k1) € (1,2,3,4)% i # j # k # L andu}] is the unit vector of a line crossirg;
ana’/y.

6 CONCLUSION

In this paper, the singularity conditions of 3T1R Paralleipulators (PMs) with identical limb
structures were investigated through the singularityyaisbf the4-RUU PM based on Grassmann-
Cayley Algebra (GCA). First, the Jacobian matdibof the PM was derived using screw theory.
Then, a wrench graph that represents the wrenches af-RigU PM, namely, the rows o in
the 3-dimensional projective space, was obtained. Accordinglguperbracket was formulated
and explored to provide a compact vector expression forittgaigrity locus, which is difficult to
assess using classical linear algebra tools. Finallyhalgeometric singularity conditions of the
4-RUU PM were enumerated and some singular configurations wastrdited.
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