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Abstract
In this work, a geometric method is presented to determine the dexterous workspace of two ar-
chitectures of kinematically redundant planar parallel manipulators. The architectures studied are
n-RRRR and n-RRPR4 . These architectures are characterized by having a revolute actuator as
the kinematically redundant actuator added to the base of each kinematic chain. First, the dex-
terous workspace of the non-redundant part (RRR or RPR) of each kinematic chain is studied.
Then the effect of the redundant actuator is considered to yield a geometric representation of the
dexterous workspace of each kinematic chain. The intersection of the dexterous workspaces of
all kinematic chains of a manipulator is determined to obtain the geometric representation of the
dexterous workspace. Finally, the Gauss Divergence Theorem is applied to compute the area of
the dexterous workspace. An example is given to demonstrate an application of the method.

Keywords: kinematic redundancy, planar parallel manipulator, dexterous workspace, RRRR,
RRPR

Espace dextre des manipulateurs n-RRRR et n-RRPR

Résumé
Ce travail consiste à déterminer l’espace dextre des manipulateurs n-RRRR et n-RRPR en utilisant
une méthode géométrique. Premièrement, l’espace dextre des parties non-redondantes (RRR ou
RPR) est déterminé. Ensuite, l’effet de l’articulation redondante est considéré pour donner une
représentation géométrique de l’espace dextre de chaque chaı̂ne cinématique. L’intersection des
espaces dextres de chaque chaı̂ne est alors déterminée pour obtenir la représentation géométrique
de l’espace dextre du manipulateur. Enfin, le théorème de divergence de Gauss est appliqué pour
calculer la surface de l’espace dextre. Un exemple est illustré afin de démontrer la méthode.

Mots-clé: redondance cinématique, manipulateur parallèle plan, espace dextre, RRRR, RRPR

4The parallel manipulators considered consist of n serial kinematic chains that connect the end-effector to the base.
R indicates a revolute joint and P indicates a prismatic joint. Underlined letters in the notation indicate that the joint is
actuated.
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1 INTRODUCTION

The shape and size of the dexterous workspace can be used to evaluate and to compare the dimen-
sions of a given architecture or to compare different architectures. The dexterous workspace for
planar manipulators can be defined as the area where the end-effector is able to reach with any
orientation.

Several researchers have studied the dexterous as well as other types of workspace for the non-
redundant 3-RRR symmetric planar architecture [1, 2, 3]. The dexterous workspace in these works
was defined by a maximum of two concentric circles for each of the three kinematic chains. For the
3-RRR architecture, a dexterous workspace of two concentric circles per chain can be called the
controllably dexterous workspace where the dexterous workspace is devoid of discontinuities [3].
Zhaohui and Zhonghe [4] identified a third concentric circle near the base of each kinematic chain
by using the four-bar mechanism analogy on a symmetric 3-RRR manipulator. Work has also been
done to determine various workspaces of planar parallel manipulators including the 3-RRR and
the 3-RPR manipulators [5].

Several works have used an integration of the workspace boundary based on the Gauss Diver-
gence Theorem [6] to obtain its surface area [1, 7].

Ebrahimi et al. [8] introduced new kinematically redundant manipulators by adding a prismatic
actuator to the base of each kinematic chain of the 3-RRR manipulator architecture. The dexterous
workspace of these kinematically redundant manipulators was obtained with a discreet method
which is computationally inefficient and does not yield an exact solution.

A method similar to the one presented in this work was applied to the n-PRRR manipulator [9,
10]. The determination of the dexterous workspace of planar n-RRRR and n-RRPR manipulators,
or of hybrid n-RRRR-m-RRPR manipulators, is the object of this work. In what follows, in order
to alleviate the text, the term workspace will denote the dexterous workspace.

The next section of this work presents the architectures studied. The method is then explained
in section 3 beginning with the dexterous workspace of the non-redundant parts of the kinematic
chains followed by the determination of the dexterous workspace of the redundant chains. Then
the workspace of the redundant manipulators is studied and examples are given to illustrate the
application of the method. Finally, a conclusion is presented.

2 ARCHITECTURES

In Fig. 1, examples of the architectures studied are illustrated. Figure 1(a) shows an example
3-RRRR manipulator whereas Fig. 1(b) shows an example 3-RRPR manipulator. It can be seen
that the n-RRRR and the n-RRPR manipulators are based on the well known 3-RRR and 3-RPR
manipulators, respectively. In both of these manipulator architectures, the redundant actuator is a
revolute actuator and a link is added to the base of each kinematic chain. As a result, the dexterous
workspaces of these manipulators are very similar.

3 METHODOLOGY

The basic concepts of the method described in this work can be applied to many different planar
parallel architectures. The method can be summarized by the following five steps:

1. Determine the boundaries of the workspace of each kinematic chain.
2. Determine all points of intersection between the boundaries of the workspace of each kinematic

chain.
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(a) 3-RRRR (b) 3-RRPR 

Figure 1: Example 3-RRRR and 3-RRPR planar parallel manipulators.

3. Segment the boundaries of the workspace of each kinematic chain at each of their points of inter-
section.

4. Determine which of these segments form the boundaries of the workspace of the manipulator.
5. Compute the contribution of each segment in the workspace and add them to obtain the area of

the workspace of the manipulator.

3.1 Workspace of RRR Kinematic Chains [10]

Step 1 in the method to determine the workspace of these manipulator architectures is determining
the boundaries of the workspace of each kinematic chain. In order to obtain this, the non-redundant
part of each kinematic chain architecture must first be considered. The effect of the redundant
actuator can then be considered to determine the boundaries of each redundant kinematic chain.

The first architecture to be studied is the RRR non-redundant portion of the RRRR kinematic
chain. Figure 2 shows an example RRR kinematic chain, where (X1, Y1) are the coordinates of the
base of the kinematic chain and (X2, Y2) are the coordinates of the end-effector. The length of the
proximal link is denoted by L1, L2 is the length of the distal link, and L3 is the length of the link
that connects the distal link to the end-effector (represents the platform). Finally, L0 is the distance
separating (X1, Y1) and (X2, Y2) for a given posture. It can be seen that (X1, Y1), L1, L2, and L3

are constant, whereas (X2, Y2) and L0 vary with the position of the end-effector.

 

(X2,Y2) 

(X1,Y1) 

L3 

L0 

L1 

L2 

Figure 2: Example RRR kinematic chain.

With the relationships between the constant link lengths L1, L2 and L3, three classes of workspace
for RRR kinematic chains can be identified using a four-bar mechanism analogy. These classes
are shown in Fig. 3 where it can be seen that the workspace of RRR kinematic chains is defined

2011 CCToMM M3 Symposium 3



by one, two or three concentric circles defining a workspace of Class 1, 2 or 3, respectively. The
radius of each concentric circle, defined by r1, r2 or r3, are defined by the following [10]:

r1 = S +M − L

r2 = |L1 − L2|+ L3 (1)
r3 = L1 + L2 − L3

where S is the length of the shortest link, L is the length of the longest link and M is the length of
the other link.

 

Class 2 Class 1 Class 3 

r1 

r2 

r3 
r3 

r2 

r1 

Figure 3: Workspace classes for RRR kinematic chains.

The concept behind the method used to determine these classes is that for a given end-effector
position, if the link of length L3 is a crank, in the four-bar mechanism analogy, that position is
part of the workspace of the non-redundant kinematic chain. When the position of the end-effector
changes, the length L0 changes and at specific lengths, the resulting four-bar mechanism changes
category. When the category of the mechanism is double crank and crank rocker, with L3 as the
crank, the end-effector is in the workspace. Thus, finding the lengths L0 that permit L3 to be
a crank forms circles that define the workspace of the non-redundant kinematic chain. Table 1
shows the conditions under which each concentric circle defines a boundary of the workspace of
the RRR kinematic chain.

Table 1: Conditions for each RRR kinematic chain class.
No link longer One link longer

than sum of others than sum of others
L3 Class 3 Class 2

shortest (r1, r2 and r3) (r2 and r3)
L3 not Class 1 No

shortest (r1) workspace
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3.2 Workspace of RPR Kinematic Chains

Similarly to the n-RRRR manipulator architecture, the n-RRPR architecture is based on the 3-
RPR manipulator with a revolute redundant actuator at the base of each kinematic chain. Again,
the non-redundant portion of the kinematic chain can be studied separately from the effect of the
redundant actuator. An example RPR kinematic chain is shown in Fig. 4 where L1 is the length of
the prismatic actuator for a given posture, Lmin

1 and Lmax
1 are the minimum and maximum lengths

of the prismatic actuator, respectively. The length of the link representing the platform of the end-
effector is denoted by L3, (X1, Y1) are the coordinates of the base of the RPR kinematic chain, and
(X2, Y2) are the coordinates of the end-effector for a given posture.

 

L1
min 

L3 

L1 

(X1,Y1) (X2,Y2) 

L1
max 

Figure 4: Example RPR kinematic chain.

The workspace of kinematic chains of this architecture belongs to one of the same three classes
as the RRR kinematic chains. The range of motion of the prismatic joint must be sufficient for
the platform to be able to complete a full rotation for any point inside the workspace. Figure 5
illustrates the extreme positions for kinematic chains of Class 1 and Class 2. From this Fig., the
radius of each concentric circle that forms the workspace of RPR chains can be determined by the
following equation:

r1 = min{L3 − Lmin
1 , Lmax

1 − L3}
r2 = Lmin

1 + L3 (2)
r3 = Lmax

1 − L3
 

L3 

L1
min 

L3 

L1
max 

(b) Class 2 (L1
max – L1

min > 2L3) (a) Class 1 (L1
min < L3) 

L1
min 

L3 L1
max 

L3 

Figure 5: Extreme positions of RPR kinematic chains.

Depending on whether or not the RPR chain respects the following two inequalities, the workspace
is defined by different classes.
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Lmin
1 < L3 (Inequality A) (3)

Lmax
1 − Lmin

1 > 2L3 (Inequality B) (4)

In Eq. (2), when Inequality A is false, radius r1 becomes negative and there is no workspace
of Class 1. For a Class 2 workspace to exist, radius r3 must be larger than r2, producing Inequality
B. When both inequalities are true, both workspaces exist, producing a Class 3 workspace.

Table 2 summarizes the classes of workspace obtained for every combination of these inequal-
ities.

Table 2: Resulting classes in each combination of inequalities A and B.
Inequality Resulting workspace
A B Class

True False 1
False True 2
True True 3
False False No dexterous workspace

3.3 Workspaces of Redundant RRRR and RRPR Kinematic Chains

As seen in the two previous sub-sections, the workspace of the non-redundant portions of RRRR
and RRPR kinematic chains are defined by the same three classes. Therefore, the effect of the
redundant actuator on the final workspace of these two chain architectures is the same. It follows
that the workspace of manipulators with kinematic chains of either of these architectures, or even
a combination of both, can be determined in the same way.

The workspaces of redundant RRRR and RRPR kinematic chains are dependent on the class
of the non-redundant portion and its associated radii, as well as the length of the redundant link.
In Figs. 2 and 4, the point (X1, Y1) is considered to be fixed. The workspace of non-redundant
RRR and RPR chains is thus centered at this point. However, when the redundant actuator and its
link are considered, the center of the workspace is no longer fixed but moves along a set trajectory.
This trajectory is simply a circle of radius equal to the length of the redundant link L4.

Figure 6 shows example RRRR and RRPR kinematic chains. In this Fig., the dimensions of
the non-redundant chain are the same as in Figs. 2 and 4, L4 is the length of the redundant link and
(X3, Y3) are the coordinates of the base point of the new chain. As stated above, the point (X1, Y1)
moves along a circle of radius L4 centered at point (X3, Y3).

 

L3 L1 

(X1,Y1) 
(X2,Y2) (X3,Y3) 

L4 

(X2,Y2) 
(X1,Y1) 

L1 L2 

(X3,Y3) 

L3 L4 

(a) RRRR (b) RRPR 

Figure 6: Example RRRR and RRPR kinematic chains.
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For each position of the redundant actuator, the resulting workspace has the form of one of
the three classes described in the two previous sub-sections. Therefore, when the point (X1, Y1)
moves, so too does the workspace. Since the redundant actuator can move freely, the workspace of
the redundant chain is the union of the workspace of the non-redundant portion at every possible
position of the redundant actuator. In other words, the workspaces of the RRRR and RRPR chains
are analogous to a marker, the shape of one of the classes discussed above, being dragged along a
trajectory defined by a circle of radius L4 centered at point (X3, Y3).

The effect of the redundant actuator is studied considering each of the classes of workspace of
the non-redundant portion of the kinematic chain, starting with Class 1. Figure 7 shows the two
cases and the two resulting types of workspace possible with chains of workspace of Class 1. In
what follows, workspaces are defined as Type X , where X indicates the number of circles needed
to define it. In this Fig., it can be seen that when L4 is shorter than the radius r1, such as in Fig.
7(a), only one circle defines the workspace of the redundant chain. However, when L4 is longer
than r1, a second circle forming an inner boundary is observed. Such is the case of the workspace
of Type 2 shown in Fig. 7(b). In the Figures of this section, the dashed circle shows the trajectory
of the center of the non-redundant workspace. Table 3 summarizes the types of workspace, the
associated radii and the conditions for workspaces resulting from Class 1 workspaces.

 

rR1 
L4 

r1 

L4 

(a) Type 1 

rR0 

rR1 r1 

L4 

(b) Type 2 

Figure 7: Workspace types resulting from Class 1 non-redundant workspaces.

Table 3: Conditions and radii of the workspace types resulting from Class 1 workspaces.
Type Condition Radii Figure

1 L4 ≤ r1 rR1 = L4 + r1 7(a)
rR0 = L4 − r1

2 L4 > r1 rR1 = L4 + r1 7(b)

Figure 8 shows the possible workspaces resulting from Class 2 non-redundant workspaces. It
can be seen from this Fig. that when L4 is shorter than r2, the resulting workspace is of Type 2, as
can be seen in Fig. 8(a). When L4 is longer than r2 but shorter than r3, the resulting workspace is of
Type 1, as seen in Fig. 8(b). Finally, when L4 is longer than r3, the resulting workspace is of Type
2 again, which is similar to the Type 2 workspace seen in Fig. 7(b). Table 4 summarizes the types,
the radii and the conditions of workspaces resulting from Class 2 non-redundant workspaces. Note
that the definition of rR0 in workspaces resulting from Class 1 is slightly different from the one in
workspaces resulting from Class 2 (See Tables 3 and 4).
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(a) Type 2 (b) Type 1 

r2 

r3 

L4 

rR3 

rR2 

rR3 

r2 

r3 

L4 

Figure 8: Workspace types resulting from Class 2 non-redundant workspaces.

Table 4: Conditions and radii of the workspace types resulting from Class 2 workspaces.
Type Condition Radii Figure

rR2 = r2 − L4

2 L4 < r2 rR3 = L4 + r3 8(a)
1 r2 ≤ L4 ≤ r3 rR3 = L4 + r3 8(b)

rR0 = L4 − r3
2 L4 > r3 rR3 = L4 + r3

The last non-redundant workspace class to be studied is the Class 3. Due to the third circle
defining this non-redundant workspace, a greater number of resulting workspace types are identi-
fied. When L4 is sufficiently small, a Type 3 workspace is obtained as shown in Fig. 9.

 

r2 

r3 

L4 

r1 rR1 rR2 

rR3 

Figure 9: Example workspace of Type 3 resulting from a Class 3 non-redundant workspace.

When L4 increases, the radius rR1 = r1 + L4 becomes larger while rR2 = r2 − L4 becomes
smaller. For the annular non-dexterous workspace to exist, rR1 < rR2 must be true, or:

L4 <
r2 − r1

2
(5)

For the annular region to disappear (L4 ≥ r2−r1
2

) while L4 is still inside the region defined by
r1 (L4 < r1), the following condition is necessary:

r2 ≤ 3r1 (6)
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When this condition is true, the workspace will henceforth be considered a Category A while
when it is false, the workspace will be considered a Category B. Thus, Category A workspaces will
not possess a non-dexterous annular workspace defined by rR1 and rR2 unless L4 respects Eq. (5).
The distinction between the two categories is important since the relationships between L4 and the
radii of the non-redundant workspaces required to define the redundant workspaces are different as
will be shown shortly. Figure 10 shows the difference between these two categories of workspace
when the redundant actuator is considered.

r2 

r3 

L4 

r1 

rR0 or rR2 

rR3 

(b) Category B (Type 4) (a) Category A (Type 2) 

r2 

r3 

L4 

r1 

rR0 

rR3 

rR1 
rR2 

Figure 10: Two categories of Class 3 workspaces.

From this Fig., the differences between the two categories of Class 3 workspaces can be ob-
served when L4 is slightly longer than r1. With manipulators of Category A, a workspace of Type 4
is not possible because, when L4 is slightly longer than r1, the circle of radius rR1 has already made
contact with the circle of radius rR2, as seen in Fig. 10(a). On the other hand, with workspaces of
category B the circles of radii rR1 and rR2 do not make contact even when L4 is slightly longer than
r1. With workspaces of this category, when L4 is slightly longer than r1, the resulting workspace
is of Type 4 as seen in Fig. 10(b).

Table 5 summarizes the types, the conditions and the radii associated with the workspaces
possible from Class 3 non-redundant workspaces of Category A and Table 6 shows the same for
Category B workspaces. From these tables, the differences between the two categories of Class 3
workspaces can be readily seen. These tables are ordered in ascending length L4 to better illustrate
the conditions under which each type of workspace is the result of the effect of the redundant
actuator. To clarify some of the expressions in the tables, note that when L4 > r1, the radius of the
hole in the inner workspace is the smallest between L4 − r1 and r2 −L4 (see Fig. 10(a)). They are
equal when L4 = r1+r2

2
. Due to space limitations, some conditions and their resulting workspace

types have no associated figures as can be seen in Tables 5 and 6. However, all four types of
RRRR and RRPR workspace are illustrated and the definitions needed for the implementation of
the method are given in these tables.

3.4 Workspace of n-RRRR and n-RRPR Manipulator Architectures

Once the workspace geometry of each chain is determined, the next step in the method is to identify
all the points where the boundaries intersect. This is simply done by determining all the points of
intersection each circle has with all the circles from the other chains.

Step 3 of the method is then to segment the circles into arcs at each of their points of intersection
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Table 5: Conditions and radii of the workspace types resulting from Class 3 workspaces of Cate-
gory A (r2 ≤ 3r1).

Type Condition Radii Figure
rR1 = L4 + r1

3 L4 <
(
r2−r1

2

)
rR2 = r2 − L4 9
rR3 = L4 + r3

1
(
r2−r1

2

)
≤ L4 ≤ r1 rR3 = L4 + r3

rR0 = L4 − r1
2 r1 < L4 <

(
r2+r1

2

)
rR3 = L4 + r3
rR2 = r2 − L4

2
(
r2+r1

2

)
≤ L4 < r2 rR3 = L4 + r3 Similar to 8(a)

1 r2 ≤ L4 ≤ r3 rR3 = L4 + r3 Similar to 8(b)
rR0 = L4 − r3

2 L4 > r3 rR3 = L4 + r3

Table 6: Conditions and radii of the workspace types resulting from Class 3 workspaces of Cate-
gory B (r2 > 3r1).

Type Condition Radii Figure
rR1 = L4 + r1

3 L4 ≤ r1 rR2 = r2 − L4 9
rR3 = L4 + r3
rR0 = L4 − r1
rR1 = L4 + r1

4 r1 < L4 <
(
r2−r1

2

)
rR2 = r2 − L4 10(b)
rR3 = L4 + r3
rR0 = L4 − r1

2
(
r2−r1

2

)
≤ L4 <

(
r2+r1

2

)
rR3 = L4 + r3
rR2 = r2 − L4

2
(
r2+r1

2

)
≤ L4 < r2 rR3 = L4 + r3 Similar to 8(a)

1 r2 ≤ L4 ≤ r3 rR3 = L4 + r3 Similar to 8(b)
rR0 = L4 − r3

2 L4 > r3 rR3 = L4 + r3

with the other circles. A circle with n points of intersection is thus divided into n segments. After
this step is complete, a list of segments can be drawn for each chain. Each segment is an arc that
does not intersect with any other arc of any other chain.

Step 4 of the method is to determine which segments identified in Step 3 are a part of the
boundaries of the workspace of the manipulator studied. To determine if a segment is part of the
boundaries of the workspace of the manipulator in question, it is verified if the segment is inside
the workspace of all the chains from which it does not originate. Since all segments have no
intersection with any other segment, if one point of the segment is in the workspace of all other
chains, then the entire segment is also in the workspace of all other chains. The mid point on the
segment is used for this as it is easy to determine and is farthest to the ends of the segment. This
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prevents potential errors due to the truncation of computational variables.
The fact that the workspace of each chain is defined by a number of concentric circles simplifies

the process of testing whether or not a point is in its workspace. Note that the circles defined by
rR0 and rR2 always define an inner limit to the workspace, i.e., a point in these circles is not in
the workspace of the chain. Inversely, circles defined by rR1 and rR3 define an outer limit to the
workspace. It is also important to note that the smaller circles take precedence in this matter.
For example, if a point is in both circles defined by rR0 and rR1, the circle defined by rR0 takes
precedence and the point is not in the workspace. Following this logic, one way to determine if a
point is in the workspace of a chain is to start with the smallest circle and work outward until the
point is in the circle. Then if the first circle to include the point is defined by rR0 or rR2, the point
is not in the workspace of that chain. If the first circle to include the point is defined by rR1 or rR3,
the point is in the workspace. If the point is not in any circle, it is not in the workspace.

Once this test is done with all segments with all other chains, a list can be drawn of all the
segments forming the boundaries of the workspace of the manipulator in question. At this point in
the method, a geometric representation of the workspace of n-RRRR and n-RRPR manipulators is
obtained.

Step 5 is used to obtain a scalar value of the area of the manipulator’s workspace.The Gauss
Divergence Theorem [6] is used to obtain the contribution of each segment that are all added to
obtain the area of the workspace [10].

4 EXAMPLE WORKSPACE

To demonstrate the versatility of the method presented, an example of the workspace of a manip-
ulator is presented in this section. The manipulator in question is a manipulator with four chains
in total, two of them being of RRRR architecture and the other two of RRPR architecture. Figure
11(a) illustrates this manipulator and Table 7 shows the dimensions of each chain in this manipu-
lator as well as the position of the base of each chain. Figure 11(b) shows the resulting workspace
which has an area of 10.57.

Table 7: Dimensions of the example manipulator.
Kinematic chain

1 2 3 4
Type RRRR RRRR RRPR RRPR

L1 or Lmin
1 2.01 1.80 0.20 0.50

L2 or Lmax
1 1.22 1.29 2.41 1.60

L3 0.41 0.41 0.41 0.41
L4 1.12 1.51 0.88 1.37

(X3,Y3) (0.0 , 1.35) (3.3 , 1.15) (2.3 , 0.0) (0.0 , 0.0)

5 CONCLUSIONS

The geometric method presented to determine the geometry of the dexterous workspace for kine-
matically redundant n-RRRR and n-RRPR planar manipulators is easy to implement. Based on the
architectural parameters, the class determining the number of concentric circles of the workspace
of the non-redundant chain is identified using Table 1 or Table 2. The associated radii are obtained
using Eq. (1) or Eq. (2). The relationship between the redundant link length L4 and the radii
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(a) 2-RRRR – 2-RRPR (b) Dexterous Workspace 

2. RRRR 
1. RRRR 

3. RRPR 

4. RRPR 

Figure 11: Example workspace of a planar parallel manipulator with a revolute redundant actuator.

of the classes dictates the type of workspace as seen in Tables 3-6. The method to determine the
boundaries of the intersection of all the kinematic chains is simple since it only involves finding
the intersection of circles.

The dexterous workspace of manipulators is an important criterion for their design. The imple-
mentation of this method is therefore a useful tool in the design of kinematically redundant planar
parallel manipulators.
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