
Path Planning for Robot-Assisted Rapid Prototyping of Ice Structures

Alessandro Ossino1, Eric Barnett2, Jorge Angeles2, Damiano Pasini2, Pieter Sijpkes3
1 Department of Electrical, Electronic and System Engineering, University of Catania, Catania, Italy,

alex.ossino@virgilio.it

2Department of Mechanical Engineering, McGill University, Montreal, QC H3A 2K6, Canada,

ebarnett@cim.mcgill.ca, angeles@cim.mcgill.ca, and damiano.pasini@mcgill.ca

3School of Architecture, McGill University, Montreal, QC H3A 2K6, Canada, pieter.sijpkes@mcgill.ca

Abstract
The development of a path-planning algorithm for the robot-assisted rapid prototyping (RP) of ice
structures is reported here. The algorithm, written in Matlab code, first imports a stereolithography
(STL) file, which contains the geometry of the part to be built, and a text file containing other
configuration parameters. The algorithm then finds intersection contours between evenly-spaced
horizontal planes and the part; these contours define the boundaries of the areas to be filled for
each layer. Each contour is then grouped with the other contours that define the same area. Sub-
sequently, support structure contours are generated automatically from the part model; a support
structure CAD model is not required. Then, part and support areas are filled by iteratively shrink-
ing each outer contour until inner boundaries are reached.

Keywords: rapid prototyping, path planning, ice structures.

Planification de trajectoires pour le prototypage robotisé de structures en glace

Résumé
Cet article présente un algorithme de planification de la trajectoire du prototypage rapide robotisé
de structures de glace. Écrit en code Matlab, l’algorithme importe, dans un premier temps, un
fichier de stéréolithographie qui contient les données à construire, puis un fichier texte comportant
les autres paramètres de configuration. L’algorithme détermine ensuite les contours des intersec-
tions entre les plans horizontaux équidistants et la pièce. Ces contours définissent les frontières
des aires de chaque couche à remplir. Chaque contour est ensuite mis dans un groupe avec les
autres contours qui définissent la même aire. Les contours pour la structure portante sont ensuite
générés automatiquement à partir du modèle de la pièce, sans avoir besoin d’un modèle CAO de la
structure portante. Les aires de la pièce et du support sont ensuite remplies en réduisant de manière
itérative les contours extérieurs jusqu’aux frontières intérieures.

Mots-clé: prototypage rapide, planification de trajectoire, structures de glace.

2009 CCToMM M3 Symposium 1

1 INTRODUCTION

Practical ice structures such as ice roads and igloos are critical for winter survival in remote areas.
Moreover, recreational structures such as ice sculptures and hotels have become more and more
popular in recent years. Traditionally, ice structures have been built manually, making them labour-
intensive and costly. However, in the past two decades, CNC ice sculpting has become quite
popular. Two of the larger companies currently working in this field are Ice Sculptures Ltd. based
in Grand Rapids, MI1, and Ice Culture Inc. based in Hensall Ontario, Canada2.

The path-planning algorithm reported here is part of a joint research project between the Depart-
ment of Mechanical Engineering, Centre for Intelligent Machines and the School of Architecture,
all at McGill University, entitled “The New Architecture of Phase Change: Computer-Assisted
Ice Construction.” The main objective of this project is to expand the formal design capabilities
of ice as a winter building material using computer-assisted fabrication techniques such as com-
puter numerical control (CNC) and rapid prototyping (RP). A detailed description of two rapid
prototyping systems currently under development for this project, including a brief mention of the
path-planning algorithm, is given in [1].

RP is a Solid Free-form Fabrication (SFF) technique, [2], which means that solid parts are built
by material deposition. No specific tooling is required for RP, as in traditional manufacturing
techniques such as milling and drilling, which remove material. RP is a SFF technique that is
often used in industry to produce prototypes quickly and at low cost. RP with ice has additional
advantages, namely, further reduced cost, small environmental impact, and high part accuracy and
surface finish. Since RP is being used frequently now in industry, path planning for RP is not a
new topic. However, for industrial RP machines, the algorithms used are typically protected and/or
machine-specific.

Consequently, we have developed an algorithm that imports a stereolithography (STL) part
model and plans the paths to build it with an Adept Cobra 600 robot installed in the Ice-Prototyping
Laboratory. The algorithm is written in Matlab code, which is preferable to programming lan-
guages such as C or C++ because it is a superlanguage, which means many useful functions are
available, less development time is needed, and debugging is easier. Matlab also allows users to
compile code to make a program accessible to non-Matlab users. Specific objectives for our al-
gorithm are to: (a) automatically generate support structure paths, when necessary; (b) generate
paths that are as smooth as possible; and (c) export data in a format suitable for the Cobra 600.

Many steps are involved in the path-planning process. Literature on the subject typically focuses
on one of the steps rather than the whole process [3–6]. In some cases, we have implemented
subalgorithms similar to those proposed by other authors, while in others, our subalgorithms were
developed from scratch. The one area of this work for which there is almost no pertinent literature
is the arrangement of the path data in a format suitable for the Cobra 600.

The paper is organized as follows: In sections 2–6, the parts of the path-planning algorithm
are described. In Section 2, input CAD models are sliced and closed contours are found for every
layer; in Section 3, contours are divided into groups for every layer; in Section 4, the support

1http://machinedesign.com/ContentItem/60970/NCroutershapesiceart.aspx
2http://www.iceculture.com/main.cfm?id=5A166F80-1372-5A65-3BEEC7256C83B62C

2009 CCToMM M3 Symposium 2

structure is found by comparing contours in adjacent layers,starting from the top of the model; in
Section 5, fill-in paths are found by shrinking outer contours; in Section 6, non-depositing paths
are found and an output file is generated in a format suitable for the Cobra 600. Finally, the global
software package scheme is outlined in Section 7.

For many parts of our algorithm, a data structure that accommodates entries of varying length is
needed. Regular matrices and arrays do not accommodate this structure; however, the “Cell Array”
structure in Matlab does, and is thus used whenever needed.

2 SLICING A STL F ILE TO FORM I NTERSECTION CONTOURS

The first part of the path-planning algorithm is to import the part geometry STL file and find
intersection contours between evenly-spaced horizontal planes and the part.

2.1 Importing and Sorting STL data

Theslice function first imports an input parameter file and an ASCII STL part geometry file,
which can be generated by nearly all CAD software packages. In the STL format, a part is approx-
imated by triangular facets, the acceptable accuracy of the approximation being specified by the
user when generating the file. For each facet, three vertices and the normal vector are stored, and
slice places this information in two matrices with single-precision entries. The latter are used
because double precision is not necessary for this application, thereby shortening the algorithm
execution time.

The vertices of each triangular facet are first sorted in ascending order of theirz-coordinates.
All the horizontal facets are ignored in this step, as they are parallel to the slicing planes.

As the layer thicknessh is fixed by the user in the input TXT file, planes slicing faceti can be
computed as

limin =

⌈

zi
min − zmin

h

⌉

+ 1, limax =

⌊

zi
max − zmin

h

⌋

+ 1 (1)

where⌈ · ⌉ denotes the ceiling function,⌊ · ⌋ denotes the floor function3, while limin and limax are
the lowest and highest planes slicing faceti. zi

min andzi
max are, respectively, the minimum and

maximumz-coordinate of faceti, andzmin is the minimumz-coordinate among all the facets in
the model. Using this technique, the range of layers that each facet intersects is found and stored
in a cell array for later use.

2.2 Forming Bounding Contours on the Intersection Plane

For every slicing plane, the following procedure is applied:for each facet that intersects the slicing
plane, two intersection points are found, thereby forming a segment of one of the bounding con-
tours for that plane. The first point is obtained by intersecting the slicing plane with the segment
joining the lowest and highest facet vertex. The other point is found by intersecting the slicing
plane with the segment joining the middle vertex with the lowest or highest vertex, depending on

3⌈ · ⌉ returns the smallest integer greater than or equal to its floating point argument(·). Similarly, ⌊ · ⌋ returns the
greatest integer less than or equal to its floating point argument(·).

2009 CCToMM M3 Symposium 3

whether the plane is lower or higher than the middle vertex. The two intersection points are stored
in a matrixP. Figure 1 shows a graphical representation of a part being sliced.

If a facet has two vertices lying on the slicing plane, both are stored as intersection points.
Of course, facets with only the highest or lowest vertex lying in the slicing plane are ignored.
Moreover, since a large amount of redundant information is stored in the STL format, in some
cases facet triangles will overlap, and duplicate segments could be produced. In order to avoid
this, a segment is added toP only if no segments identical to itself are already present in the array.

Once all the intersection segments between the slicing plane and every facet have been found,
the segments are joined to form bounding contours using the following technique: the first segment
in P is defined as the first segment of the first contour.P is searched to find the second segment,
which will have an identical point to the end-point of the first segment. The procedure is iterated,
and when the first and last points of the contour coincide, the procedure is complete. IfP is empty
at this point, all contours in the slicing plane have been found; otherwise, the procedure is started
over to define another contour.

Slicing

Facets
Intersection
 Contour

 Plane

Figure 1: Slicing a STL part

2.3 Sorting and Filtering Bounding Contours

Next, outer contour points are sorted clockwise and inner contour points are sorted counterclock-
wise. Inner and outer contours are defined as shown in Fig. 2(b). Contours are distinguished as
inner and outer contours using thez-coordinatez1 of v1,2 × vn, wherev1,2 is the vector from the
first to the second contour point, andvn is the vector normal to the facet thatv1,2 lies on. If z1

is negative, the order of the contour points is reversed. Contour points are sorted in this way in
order to simplify many of the other functions used later in the path-planning algorithm. Finally,
each closed contour is filtered to eliminate adjacent points that are too close, collinear points, and
sequential segments in opposite directions.

3 GROUPING BOUNDING CONTOURS

Once all the closed bounding contours on each slicing plane have been found, agroup function
is executed to organize the contours in such a way that the cross-sectional area to be filled will be
clearly defined for subsequent steps. Each outer contour is stored in a contour group, along with
all contours inside of it that define the same area, as shown in Fig. 2.

2009 CCToMM M3 Symposium 4

(a) (b)

Figure 2: (a) STL model of a pipe fitting with the slicing plane shown; (b) classification of bound-
ing contours

3.1 Determining the Hierarchy Among Nested Contours

Thegroup function is used to create an arrayq that defines the hierarchy among nested contours
for layer li. Each contourγj is associated with array indexj. Thejth entry ofq is equal to the
parent contour indexp, that is, the closest contour that containsγj. If no contours includeγj,
thenqj is set to zero.qj is computed by determining whetherγj contains, is contained in, or is
separate from any contourγk, which has already been classified inq. The entries ofq are updated
as necessary at each step. The hierarchy array for the slice shown in Fig. 2(b) is given in Table 1.

Table 1: Hierarchy arrayq for the slice shown in Fig. 2(b)

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
qj 0 1 1 3 4 1 1 1 0 9 9 11 12 9 9 9

3.2 Defining a Cell Array of Contour Groups

The hierarchy arrayq is used to find out how deeply nested each contourγj is. If γj is contained by
an even number of other contours, it must be an outer contour. A cell array of contour groups,Ai,
is then defined forli: each entry ofAi is an array whose first entry is an outer contour index and
other entries indicate contours inside this outer contour, all defining the same area. The structure
of Ai for the slice shown in Fig. 2(b) is given in Fig. 3.

4 SUPPORT STRUCTURE GENERATION

When a part is slanted by more than a certain limiting angle, a supporting structure must be built
to ensure that part material is deposited at the correct elevation. The limiting angle can range from
0 to 45◦: this value depends on the desired accuracy and the ratio of the path height to the path
width . The material used for the support must be different from the part material so that it can be
removed without too much difficulty after the part is completed. For rapid freeze prototyping, we

2009 CCToMM M3 Symposium 5

A

63 7 8
4 5
9

21

1312
1615141110Ai

Figure 3: Cell arrayA for slice shown in Fig. 2

use a brine solution for the support structure; when the build completes, the brine is safely melted
away in a freezer maintained at approximately−4◦C, leaving the part intact. The selection of the
specific brine solution used is discussed in [1].

Support structures can be modelled as separate parts, though this step can be time-consuming,
and support models must often be quite complex. Therefore, it is desirable to develop an algorithm
that will generate the paths for building the support structure using only the part geometry.

In the literature, many algorithms have been reported that generate support structures for CAD
models to be built using RP. Chalasani et al. [7] consider only the 2D contours in each slicing plane,
while other works [5, 8] consider the 3D model, analyzing triangular facets. We have developed
asupport function in Matlab which is similar to the first method: support-structure build paths
are generated by comparing the contours of two adjacent layers at a time.

Thesupport function is implemented after the contours for every layer of the part have been
grouped. This function generates possible support areas forli by comparing the contours inli and
l∗i+1, starting with the highest layer. Note that the contours stored inl∗i+1 are the result of merging
the part and support contours inli+1.

4.1 Cut-and-Merge Operations to Form Support Structure Bounding Contours

Two cases must be considered when forming support structure bounding contours. As shown in
Fig. 4, in some cases two of the contours in layersli andl∗i+1 intersect, while in others they do not.
For the first case, cut-and-merge operations are necessary to form the support-structure bounding
contours. The second case is simpler, as the support area, if necessary, is defined directly by two
contours inli andl∗i+1. For both cases, the data scheme implemented in Section 3 is exploited to
identify the contours that define the support structure area for each layer.

4.2 Finding Intersection Points For Intersecting Contours in Layersli andl∗i+1

First, all intersection points between contours in layersli and l∗i+1 are found. Since each contour is
represented by an array of points which form a closed polygon when joined, the intersection points
are determined by finding intersections between the line segments of the two contours at hand. In
order to speed up the algorithm, intersection points are only computed when the rectangles formed
by thex- andy-coordinate extrema for the two contours overlap.

Each segmentgk in li or l∗i+1 is associated with two end-points represented by two-dimensional
vectorspak andpbk, as shown in Fig. 5. A scalar parametertk varies between 0 and 1 alonggk.
If g1 andg2 are arbitrary segments inli or l∗i+1, vectorsp1 andp2, which represent the position of

2009 CCToMM M3 Symposium 6

Support Area

li

l∗i+1

(a)

Support Area

l∗i+1

li

(b)

Figure 4: Support areas: (a) intersecting contours in adjacent layers; (b) non-intersecting contours
in adjacent layers

points alongg1 andg2, respectively, can be expressed as

p1 = p1a(1 − t1) + p1bt1, p2 = p2a(1 − t2) + p2bt2

Parallelism between segmentsg1 andg2 can be readily detected bysin σ, with σ indicated in Fig. 5.
In terms of the unit vectorse1 ande2 of the same figure,

sin σ = eT
2 Ee1, E =

[

0 −1
1 0

]

(2)

If |sin σ| < ǫ, for ǫ small enough, then the segments are declared parallel; otherwise, the inter-
section pointP is determined by the values oft1 andt2, which can be obtained from the solution
of eqs. 2:

t1 =
(p2a − p2b)

T
E (p2a − p1a)

(p2a − p2b)
T
E (p1b − p1a)

, t2 =
(p1a − p1b)

T
E (p2a − p1a)

(p2a − p2b)
T
E (p1b − p1a)

(3)

If 0 ≤ t1 ≤ 1 and0 ≤ t2 ≤ 1, then segmentsg1 andg2 intersect. Otherwise, the lines containing
these segments intersect, but the segments do not, as seen in Fig. 5. For intersecting segments, the
intersection point is calculated, for robustness, as the mean value of the two expressions of eq. (2).
Then, this point and the segment indices in their respective contours are stored in new arrays.

A filter function is applied to each support contour to delete points spaced less than twice the
deposit path width,2pw, from any contour segment. If a contour is too small, the filter function
deletes the entire contour.

Using the procedures described in this section, a contour cell arrayB is defined for the support
structure which is equivalent to the contour cell arrayA defined for the part to be built. In Fig. 6,
a sliced beer mug model and the support structure for its handle are shown.

5 FILLING PATH GENERATION

Many authors [6,9,10] reportedly use zig-zag paths to fill object areas in their RP algorithms. Xu
and Shaw [11] consider 2D material gradients within each layer to produce smooth filling paths.

2009 CCToMM M3 Symposium 7

O

t2 < 0

t2 = 0

t2 = 1

p1b

e2

e1

g1

g2

σ

P

0 < t1 < 1

p1a

p2

p2a

p2b

p1

t1 = 0
t1 = 1

Figure 5: The intersection of segmentsg1 andg2 in layersli andl∗i+1

Zig-zag filling segments are relatively simple since the longest filling segments for a layer are all
parallel, and these paths are joined by shorter segments near the bounding contours. The zig-
zag technique is also relatively robust, since it will usually work quite well with complex parts.
When zig-zag paths are followed by an RP machine, however, abrupt changes in direction are
required, resulting in high dynamic loads and loss of accuracy for the part being built. Therefore,
we are introducing a different technique that will generate much smoother filling paths for most
objects. We have developed afill function, which takes the outer contour in a contour group
and iteratively shrinks it inwards until it becomes too close to inner contours or to itself.

Before filling paths can be found, we must first shrink the bounding contours bypw/2, so that
the edges of the deposited water correspond to the edges of the part to be built. This is achieved by
calling theshrink function once for every contour.

5.1 Shrinking a Single Contour

Contour pointpi is considered along with the two contour segmentsg1 andg2 that connect topi.
The vectorv, which bisects the angle formed byg1 andg2, is found. If we shrink the contour bys,
and the angle betweeng1 andg2 is σ, the distance thatpi must be moved alongv is given by

r =
s

sin (σ/2)
(4)

Since there are two possible directions forv, a filter must be applied to ensure the correct one
is chosen. Thez-coordinatez1 of v × (pi+1 − pi) is considered. Ifz1 is negative, the direction
of vectorv is reversed. Note that using this filter, inner and outer contours are expanded and
shrunken, respectively, because of the order of contour points imposed in Section 2.

If we let pi andp′

i be points on the original and shrunken contours, respectively, we have

p′

i = pi + v. (5)

Once we have shrunk all the bounding contours in every layer bypw/2 in the correct direction, the

2009 CCToMM M3 Symposium 8

(a)

−40 −20 0 20 40 60 80 100

−40
−20
0
20
40

0

20

40

60

80

100

120

mm

m
m

m
m

(b)

Figure 6: Generating support structures for a beer mug: (a) CAD model; (b) part (black) and
support structure (grey) bounding contours

fill function is called, in order to fill the object areas with several smooth paths.
For layerli, each shrunken contour group is considered, by recalling each entry in the cell array

Ai. Every group is input to thefill function together with a threshold valueth, which allows
the user to specify the minimum distance between filling path points. Note thatth needs to be
sufficiently small to ensure paths are smooth, but large enough so that points are adequately spaced
for the the V+ programming language used with the Adept Cobra 600 robot. For example, if the
desired speed along a path isvp in mm/s, points must be spaced by at least0.016vp mm because
the standard trajectory generation frequency for V+ is 62.5 Hz4. If the points are spaced closer
than this, the actual speed observed will be lower than desired. Additionally, the computational
capabilities of the Cobra controller are limited5, so it is desirable to have as few points as possible
to avoid processing delays.

5.2 Iteratively Shrinking Outer Contours and Performing Cut, Merge, and Filter Operations

Our fill function first calls acut function in order to recognize whether the contour we want
to shrink is too narrow at any point, or if is too close to inner contours. When necessary, cut-
and-merge operations are performed to define new bounding contours. Note that examples of both
of these cases can be seen in Fig. 7(a). To create the filling paths,shrink is used to shrink the
outermost contours of each contour group iteratively inward bypw.

4With an optional software licence, trajectory frequencies of up to 500 Hz are possible.
5Our Adept C40 Compact Controller carries a AWC-II 040 Processor (25 MHz), 32MB RAM, and a 128MB

CompactFlash disk.

2009 CCToMM M3 Symposium 9

0 15 30 45 60 75 90 105

0

15

30

45

60

75

90

105

120

135

150

160

mm

m
m

Bounding Contour shifted by p
w

/2

Bounding Contour

(a)

−35 −15 5 25 45 55
−55

−45

−35

−25

−15

−5

5

15

25

35

45

55

65

75

85

95

mm

m
m

Filling Contour

(b)

Figure 7: Contours with filling paths for part cross-sections: (a) a dumb-bell shaped part; (b) a
beer mug

Following each iteration, thefilter function is applied to remove points on the contour that
are too close to each other. Thefill function continues until every filling path has become too
small and has been removed by eithercut or filter.

In Fig. 7, the filling paths generated with thefill function for two different part slices are
shown. Figure 7(a) shows a slice of a dumb-bell shaped part with two holes, while Fig. 7(b) shows
a slice of a beer mug.

Thefill function described in this section is quite complex compared to the zig-zag tech-
niques, as can be seen from the computational time results shown in Table 2. However,fill also
produces smoother paths which can be followed more closely by the RP system, resulting in higher
part-accuracy. Of course, the advantages of using ourfill function depend to a great extent on
the part being built. For the beer mug slice shown in Fig. 7(b),fill is clearly the superior tech-
nique, though for the dumb-bell slice shown in Fig. 7(a), the advantages of usingfill are less
apparent, since there are some abrupt changes in direction.

6 DEFINING NON-DEPOSITING PATHS AND EXPORTING DATA

All the paths needed to build the CAD model and its support structure must be written in an
output format suitable for the V+ programming language used with the Adept Cobra 600 robot.
Therefore, anexport function is defined, which exports the paths as a series of points. Each

2009 CCToMM M3 Symposium 10

Table 2: Computation time results for a beer mug part: height = 125 mm; layer height = 2 mm;
path width = 1 mm

Case Time (s) Number of trajectory points

Zig-zag 36 24 793
fill function 364 70 274
fill function with support structure 971 88 205

point is represented by its(x, y, z) coordinates, and an additional parameter is defined at each
point to control theON1/ON2/OFF state of the deposition system. The deposition system states
are: ON1: water is being deposited to form the part structure;ON2: brine is being deposited to
form the support structure;OFF: nothing is being deposited. In this way, the end-point of every
closed contour must mark the start of a non-depositing segment.

7 SOFTWARE PACKAGE

The path-planning algorithm is written in Matlab code, using version R2008a. The algorithm
can be executed within the Matlab environment; however, a stand-alone executable has also been
developed that can be executed by users who do not have Matlab installed. For both cases, the
program reads in a part geometry STL file and a parameter TXT file and outputs a trajectory
data file. The input TXT file contains the STL file name, the deposition path widthpw, the layer
thicknessh, and the threshold value used for the fillingth.

The Matlab Compiler, which is included with a standard Matlab distribution, is used to create
stand-alone executables. A runtime engine, called the Matlab Compiler Runtime (MCR), can be
used to run any executable built with the Matlab Compiler. The MCR is also included with a
standard Matlab distribution, and may be re-distributed free of charge to others who only need to
run standalone executables.

8 CONCLUSIONS

We reported on a new path-planning algorithm, composed of several functions, to be used for
robot-assisted rapid prototyping systems for ice construction. The algorithm is able to slice any
CAD model and find closed contours for each layer, even when the part cross-section contains
several nested contours. A support structure function has been written and tested on a martini
glass model and a beer mug model. A filling function generates smoother paths than the simpler,
more traditional zig-zag technique. Non-depositing segments have been inserted at the starting-
and end-points of each contour to reduce speed variations along depositing paths. Finally, by using
the Matlab Compiler, a stand-alone executable can be generated from the code.

Experimental tests will be done using the trajectories generated with the path-planning algo-
rithm. We will then assess the quality of the built ice structures and the performance of the Cobra
600 while following the synthesized trajectories, and the algorithm will be modified as needed.

2009 CCToMM M3 Symposium 11

9 ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of The Social Sciences and Humanities Research
Council of Canada (SSHRC), the Fonds québecois de la recherche sur la nature et les technolo-
gies, and the Fondation universitaire Pierre Arbour. The generous rebate received from Adept
Technology is dutifully acknowledged.

REFERENCES

[1] E. Barnett, J. Angeles, D. Pasini, and P. Sijpkes, “Robot-assisted rapid prototyping for ice
structures,” to be presented atIEEE Int. Conf. on Robotics and Automation, Kobe, Japan,
May 2009.

[2] R. H. Crawford and J. J.Beaman, “Solid freeform fabrication,”IEEE Spectrum, vol. 36, no. 2,
pp. 34–43, 1999.

[3] S. H. Choi and K. T. Kwok, “A tolerant slicing algorithm for layered manufacturing,”Rapid
Prototyping Journal, vol. 8, no. 3, pp. 161–179, 2002.

[4] P. Haipeng and Z. Tianrui, “Generation and optimization of slice profile data in rapid proto-
typing and manufacturing,”Rapid Prototyping Journal, vol. 187-188, pp. 623–626, 2007.

[5] S. Allen and D. Dutta, “Determination and evaluation of support structures in layered manu-
facturing,”Journal of Design and Manufacturing, vol. 5, no. 3, pp. 153–162, 1995.

[6] R. C. Luo, Y. L. Pan, C. J. Wang, and Z. H. Huang, “Path planning and control of functionally
graded materials for rapid tooling,” inIEEE Int. Conf. on Robotics and Automation, Orlando,
FL, May 2006, pp. 883–888.

[7] K. Chalasani, L. Jones, and L. Roscoe, “Support generation for fused deposition modeling,”
in 6th Solid Freeform Fabrication Symposium, Orlando, FL, 1995, pp. 229–241.

[8] X. Huang, C. Ye, S. Wu, K. Guo, and J. Mo, “Sloping wall structure support generation
for fused deposition modeling,”Int. Journal of Advanced Manufacturing Technology, 2008,
DOI: 10.1007/s00170-008-1675-2.

[9] R. C. Luo, C. L. Chang, J. H. Tzou, and Z. H. Huang, “Automated desktop manufactur-
ing: Direct metallic rapid tooling system,” inIEEE Int. Conf. on Robotics and Automation,
Barcelona, Spain, May 2005, pp. 584–589.

[10] H. Chen, N. Xi, W. Sheng, Y.Chen, A. Roche, and J. Dahl, “A general framework for auto-
matic CAD-guided tool planning for surface manufacturing,” inIEEE Int. Conf. on Robotics
and Automation, Taipei, Taiwan, Sept. 2003, pp. 3504–3509.

[11] A. Xu and L. L. Shaw, “Equal distance offset approach to representing and process plan-
ning for solid freeform fabrication of functionally graded materials,”Computer-Aided De-
sign, vol. 37, pp. 1308–1318, 2005.

2009 CCToMM M3 Symposium 12

