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Abstract

In this paper the 3-PRPR redundant planar parallel manipulator is introduced and thoroughly anal-

ysed. The analysis consists on: a) the solution of the forward (direct) displacement problem using

an analytical procedure; b) the geometrical determination of the orientational workspace; c) the

solution of the inverse displacement problem; d) the solution of the forward velocity problem; and

finally, e) the determination of the direct and inverse singularities by inspecting the manipulator’s

Jacobian matrices. The singularity analysis includes the geometrical interpretation of the singu-

larity conditions. It was found that the direct singularities are equivalent to those of the typical

non-redundant 3-RRR manipulator. Conversely, the inverse singularities may only occur when the

displacement of one or more of the prismatic joints is equal to zero which, in a typical implemen-

tation this would not be possible.

Keywords: planar parallel manipulator, kinematic redundancy, forward kinematics, inverse kine-

matics, singularities.

Analyse cinématique du manipulateur redondant plan de type 3-PRPR

Résumé

Cet article introduit un nouveau manipulateur redondant parallèle plan. Le manipulateur qui a une

architecture symétrique de type 3-PRPR, est analysé en détail. L’analyse cinématique comprends :

a) la solution du problème géométrique direct ; b) la détermination par méthode géométrique

de l’espace de travail du manipulateur ; c) la solution du problème géométrique inverse ; d) la

solution de la cinématique directe ; et enfin, e) la détermination des singularités directes et inverses

à travers de l’inspection des matrices jacobiennes. L’analyse des singularités inclut l’interprétation

géométrique des conditions qui produisent les singularités. Les résultats de l’analyse montrent que

les singularités directes sont équivalents à ceux du manipulateur non redondant de type 3-RRR. Par

contre, les singularités inverses existent seulement quand un ou plus des actionneurs prismatiques

ont une valeur de zéro ce qui est peu probable dans une implémentions réelle.

Mots-clé: manipulateur parallèle plan, redondance cinématique, cinématique directe, cinématique

inverse, singularitées.
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1 INTRODUCTION

In the last few decades, parallel manipulators have attracted significant attention from the robotics

community. The main reasons for this are their well accepted advantages in comparison to the

serial ones such as: high structural rigidity, high payload-to-weight ratio and relatively high ac-

curacy, amongst other. However, they have a number of drawbacks: complexity in their forward

kinematic equations, relatively small workspace, singularities inside the workspace, to name a few.

Some of the cited drawbacks, namely the singularities inside their workspace and a generally small

workspace, may be overcome by the use of redundancy. In parallel manipulators, there are three

basic types of redundancy:

a) Kinematic redundancy consists of adding extra active joints and links to one or more branches

of the mechanism [1, 2, 3]. In this case the added mobility of the mechanism allows for an

enlarged workspace while helping avoid most singular configurations [4, 5].

b) Actuation redundancy consists of replacing passive joints by active ones. In doing so, the

number of DOF (degrees-of-freedom) of the manipulator does not change. Actuation redun-

dancy reduces or eliminates certain types of singular configurations within the manipulator’s

workspace [6, 7].

c) Branch redundancy refers to the addition of extra actuated branches to the manipulator [8].

Branch redundancy normally allows for improved force capabilities and reduction of most

singular configurations.

Despite the cited advantages of redundant parallel manipulators over their non-redundant coun-

terparts, they all have increased complexity of the mechanism in terms of structural design, kine-

matic analysis and control. For instance, in the case of actuation or branch redundant manipula-

tors, an infinite number of solutions to the inverse force problem exist. That is, an infinite number

of joint forces/torques combinations can produce one same force-moment couple at the end effec-

tor. As such, it is possible to have force interference which may induce harmful internal forces

within the mechanism [8, 9]. This, in turn, does not allow such manipulators to be controlled using

simple position control schemes [4]. Conversely, in the case of kinematically redundant manipula-

tors, the focus of this paper, the inverse displacement problem (IDP) has infinite solutions for each

kinematically redundant branch [2, 3]. That is, an infinite choice of joint positions and velocities

exist for any particular position and velocity of the end effector. Therefore, the choice of kinematic

solution (whether it is position, velocity or higher order) needs to be made using criteria such as

maximise distance to singular configurations or improved dexterity [4, 5].

Ebrahimi et al. [3, 10] and Cha et al. [4] proposed a number of redundant planar parallel ma-

nipulators all with 3-RPRR, 3-PRRR, 3-RRPR 3-RPRPR architectures3. In this work, the 3-PRPR

redundant planar parallel manipulator is proposed and thoroughly studied. The planar 3-PRPR

manipulator has six actuated joints and thus has three degrees of kinematic redundancy. The mo-

tivation of this work is to analyse a manipulator with three degrees of kinematic redundancy with

two active prismatic pairs per branch. The proposed architecture is the simplest of this family as

the first prismatic pair is attached to the ground. The analysis that follows consists on a) solving the

3P and R denote actuated prismatic or revolute joints, respectively, while P and R denote passive prismatic and

revolute joints, respectively.
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Figure 1: The 3-PRPR redundant planar parallel manipulator

forward displacement problem (FDP) using an analytical procedure, b) geometrically calculate the

orientational workspace of the manipulator, c) solve the inverse displacement problem, d) solve the

forward velocity problem and finally e) determine the direct and inverse singularities by inspecting

the Jacobian matrices.

2 FORWARD DISPLACEMENT SOLUTION

The proposed 3-PRPR manipulator is shown in Figure 1. This kinematically redundant planar

parallel manipulator consists of 3 identical legs. Each leg is a kinematic chain with a couple of

PR pairs in series. The moving platform is shaped as an equilateral triangle and the prismatic pair

attached to the frame are angled at 2π/3 from each other with the first one aligned with the inertial

Y axis. Two reference frames are defined to develop the kinematic analysis: a fixed or inertial

{OXY Z} and a frame {Pxyz} attached to the moving platform with origin P at the centroid of

the triangle and the y axis pointing in the direction of point B1 (Figure 1).

The vector loop closure equation for each leg can be stated as:

ai + Li + 0Rm
mhi = p (1)

where ai = OAi, Li = AiBi,
mhi = BiP , p = OP and 0Rm is a 3 × 3 proper orthonormal

rotation matrix representing the orientation of the moving frame {Pxyz} relative to the inertial

frame {OXY Z}. Given that the motion of the moving platform and thus the frame {Pxyz} is

constrained on the XY plane, matrix 0Rm coincides with a basic rotation matrix expressing a

rotation φ around the Z axis.

Note that, in equation (1), all vectors without a leading superscript are expressed in the fixed

reference frame whereas vector mhi, expressed in the moving ref. system, was multiplied by the

rotation matrix 0Rm in order to express it in terms of the fixed frame.

In the forward displacement problem, the actuator variables Li and ai (i = 1 . . . 3) are given

while the elements of p and the angle φ, are solved for. To do so, equation (1) if first re-written as
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follows and then squared:

Li = p− ai −
0Rm

mhi (2)

L2

i =
(

x2 + y2
)

+ a2

i + h2

i − 2p · ai − 2p ·
(

0Rm
mhi

)

+ 2ai ·
(

0Rm
mhi

)

(3)

where Li, ai and hi are the magnitude of vectors Li, ai and hi, respectively whereas x, y denote

the first two Cartesian components of vector p. The terms in the previous equations are given by:

a1 = a1

[

0 1 0
]T

;

a2 = a2

[

p q 0
]T

;

a3 = a3

[

−p q 0
]T

mh1 = h1

[

0 1 0
]T

;

mh2 = h2

[

p q 0
]T

;

mh3 = h3

[

−p q 0
]T

with p = cos (7/6π) and q = sin (7/6π) . Substituting the elements of these vectors into equa-

tion (3) leads to the following three equations (one for each limb):

(x− h1sφ)
2 + (y − a1 + h1cφ)

2 − L2

1 = 0

(x− a2p + h2pcφ − h2qsφ)
2 + (y − a2q + h2psφ + h2qcφ)

2 − L2

2 = 0 (4)

(x + a3p− h3pcφ − h3qsφ)
2 + (y − a3q − h3psφ + h3qcφ)

2 − L2

3 = 0

where c∗ and s∗ correspond to the cos(∗) and sin(∗), respectively.
In what follows, the half angle substitution is used to solve equations (4). First, the equations are

expanded and the trigonometric identities are replaced as cφ = 1−t2

1+t2
, sφ = 2t

1+t2
with t = tan(φ

2
).

This produces a set of polynomial equations in terms of t which is then suppressed according to

the Sylvester Dialytic Elimination Method. Thus, equations (4) become:

E0x
2 + E1y

2 + E2x + E3y + E4 = 0

E
′

0x
2 + E

′

1y
2 + E

′

2x + E
′

3y + E
′

4 = 0 (5)

E
′′

0 x2 + E
′′

1 y2 + E
′′

2 x + E
′′

3 y + E
′′

4 = 0
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Explicit expressions of parameters Ek, E
′

k, E
′′

k (k = 0 . . . 4) are

E0 = E
′

0 = E
′′

0 = E1 = E
′

1 = E
′′

1 = 1 + t2

E2 = −4h1t,

E
′

2 = −2a2p(1 + t2) + 2ph2(1− t2)− 4h2qt,

E
′′

2 = 2a3p(1 + t2)− 2ph3(1− t2)− 4h3qt

E3 = 2h1(1− t2)− 2a1(1 + t2),

E
′

3 = −2a2q(1 + t2) + 2qh2(1− t2) + 4h2pt

E
′′

3 = −2a3q(1 + t2) + 2qh3(1− t2)− 4h3pt

E4 = −2h1a1(1− t2)−D1(1 + t2),

E
′

4 = −2h2a2(1− t2) + D2(1 + t2),

E
′′

4 = −2h3a3(1− t2) + D3(1 + t2)

Di = a2

i + h2

i − L2

i ,

i = 1, 2, 3

Then, the first of equations (5) is subtracted from to the other two. From which, and considering

that E
′

0 = E
′′

0 = E
′

1 = E
′′

1 , the following equations are obtained:

E0x
2 + E1y

2 + E2x + E3y + E4 = 0 (6)

G1x + G2y + G3 = 0 (7)

G4x + G5y + G6 = 0 (8)

where:

G1 = E
′

2 − E2, G2 = E
′

3 −E3, G3 = E
′

4 − E4

G4 = E
′′

2 − E2, G5 = E
′′

3 − E3, G6 = E
′′

4 − E4

Equations (7) and (8) allow to obtain components x and y as follows:

x = H1/H0 (9)

y = −G6/G5 −G4x/G5 (10)

with: H1 = (G2G6 −G3G5)/G5 and H0 = (G1G5 −G4G2)/G5.

Substituting equations (9) and (10) into equation (6), a polynomial equation in terms of t is

obtained as:

E0

(G2G6 −G3G5)

(G1G5 −G4G2)
2
−E1

[

G6

G5

+
G4

G5

(G2G6 −G3G5)

(G1G5 −G4G2)
2

]

+E2

(G2G6 −G3G5)

(G1G5 −G4G2)
− E3

[

G6

G5

+
G4

G5

(G2G6 −G3G5)

(G1G5 −G4G2)

]

+ E4 = 0 (11)

Equation (11) is of the sixth order. In the range -π < φ < π each solution of equation (11)

provides two possible values for φ. However only six values of φ are solutions of the original

system of equations (4). Therefore there are at most six solutions for the FDS of the manipulator

under study.
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2.1 Numerical example for the FDS

Consider the displacements values of all six actuators as given in Table 1 where l.u. denotes

the length unit chosen for the calculation. The displacements were randomly selected within the

actuators’ imposed limits. With this data, equation (11) takes the following form:

2228.6t6 − 45.76t5 + 86.31t4 − 47.90t3 − 6.64t2 − 6.85t + 1 = 0 (12)

Solutions of equation (12) are given in Table 2. Omitting the complex solutions in Table 2, φ
can take the values given in Table 3 whereas the corresponding coordinates of the moving platform

are given in Table 4.

3 ORIENTATIONAL WORKSPACE

The orientational workspace is defined as the region where every point may be reached by a ref-

erence point on the moving platform while the platform can achieve all possible orientations (i.e.,

any angle −π < φ < π). Here, the commonly-used geometrical procedure introduced for non-

redundant manipulators in [11] is used. The geometrical data used for the example presented here

is given in Table 5. h1 = h2 = h3 were chose to be equal to the unit to allow the results within this

study to be easily scaled. The actuators’ upper limit, i.e., aimax
and Limax

, were arbitrarily picked

to be 5.

The orientational workspace is schematically shown in Figure 2. As it can be observed, the

workspace for the symmetrical case is a circle. The radius of the circle denoting the limit of the

orientational workspace is equal to Limax
− hi. The presence of two prismatic pairs provides a

wide workspace. The workspace’s area is about 39 times greater than the moving platform’s area,

in comparison with the ratio between the maximum stroke of the actuators and hi which is only 5.

Table 6 shows the ratio RA between the workspace and the moving platform areas, respectively

Aws and Amp if the upper limits of the pairs or the dimension of the moving platform are changed.

It is worth noting that the orientational workspace directly increase with the limit imposed on Li

(i.e., Limax
) while remaining invariant with respect to the limits imposed on ai. The limits on ai,

on the other hand, influence the solution of the inverse displacement problem.

In the case of Limax
= 10 [l.u.] and hi = 1 [l.u.] the ratio between the workspace and the

moving platform areas reaches about 196.

4 INVERSE DISPLACEMENT PROBLEM

Equations (4) may be used to solve the inverse displacement problem (IDP) as well. Since the 3-

PRPR manipulator has three degrees of kinematic redundancy, there are∞3 solutions of the IDP.

That is, although the system of equations (4) has three independent equation, it has 6 unknowns

(i.e., ai and Li for i = 1, 2, 3).
For an easier physical interpretation, equations (4) can be re-written as:

Table 1: Input data for the numerical calculation of the FDS.

a1 [l.u.] L1 [l.u.] a2 [l.u.] L2 [l.u.] a3 [l.u.] L3 [l.u.]

1.6 0.6 1.5 1.6 2.4 1.5
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Table 2: Roots of equation (12).

t1 t2 t3 t4 t5 t6

0.1594 0.3023 -0.003

+0.326j

-0.2203

+0.1977j

-0.2203

-0.1977j

-0.003

-0.326j

Table 3: Values taken by φ (complex values are

omitted).

φ1 φ2

0.3161 0.5871

Table 4: Coordinates of the centre of the mov-

ing platform.

[x, y]T1 [x, y]T2
[0.8896, 0.4912]T [0.7442, 0.1984]T

Table 5: Geometrical data for the orientational

workspace calculation.

h1 = h2 = h3 aimin
, aimax

Limin
, Limax

[l.u.] [l.u.] [l.u.]

1 0, 5 0, 5

Table 6: Ratio Aws/Amp when varying ai, Li

limits.

h1 = h2 = h3 Limax
RA

[l.u.] [l.u.]

1 5 38.7

1 10 195.9

3 5 1.1

3 10 13.2

^

Limax
− hi

Figure 2: The orientational workspace of the

symmetrical 3-PRPR manipulator.

A1

B1

a1max

L1max

L1max
+ h1

P
h1

Figure 3: IDP locus solutions (branch 1)
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(xB1
)2 + (yB1

− a1)
2 = L2

1

(xB2
− a2p)2 + (yB2

− a2q)
2 = L2

2 (13)

(xB3
+ a3p)2 + (yB3

− a3q)
2 = L2

3

where xBi
and yBi

are the Cartesian components of the coordinates of point Bi with respect to

the base frame (see Figure 1). Equations (13) represent three circles of radius Li whose centre is

positioned at a distance ai from the origin O along the direction of the first prismatic joint on leg

i. As shown in Figure 3, the locus of solutions for each leg is obtained as the envelope of a circle

of radius Limax
+ hi swept along the direction of the first prismatic joint of leg i with aimax

. They

can be expressed as:

a2

1 + L2

1 − 2a1L1cθ1
= (xB1

+ yB1
)2

a2

2 + L2

2 − 2a2L2cθ2
= (xB2

+ yB2
)2 (14)

a2

3 + L2

3 − 2a3L3cθ3
= (xB3

+ yB3
)2

where θi is the angle formed by ai and Li directions (see Figure 1).

Thus, for a given pose of the moving platform, (i.e., given x, y, φ and therefore xBi
and yBi

too) the actuator displacements for each leg (i.e., ai and Li) can take ∞ values which guarantee

equations (14) are satisfied.

This fact is typical of kinematically redundant manipulators and will allow to select an appro-

priate actuation strategy for improving the quality of the moving platform motion. The choice of

solution may depend on many criteria (e.g., [1, 5, 12, 13, 14]).

5 JACOBIAN MATRICES AND SINGULARITIES

Equations (4) can be differentiated with respect to time. In matrix form the calculation leads to:

Jzż = Jqq̇ (15)

where

ż =
[

ẋ ẏ φ̇
]T

q̇ =
[

ȧ1 L̇1 ȧ2 L̇2 ȧ3 L̇3

]T

(16)
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and matrices Jq and Jz correspond to the manipulator’s inverse and forward Jacobian matrices,

respectively. The elements of the forward Jacobian matrix Jz are

Jz1,1
= x− h1sφ;

Jz1,2
= y + h1cφ − a1;

Jz1,3
= −h1cφx− h1sφy + h1sφa1;

Jz2,1
= x− pa2 + ph2cφ − qh2sφ;

Jz2,2
= y − qa2 + ph2sφ + qh2cφ;

Jz2,3
= ph2cφy − qh2sφy − ph2sφx− qh2cφx + h2sφa2;

Jz3,1
= x + pa3 − ph3cφ − qh3sφ;

Jz3,2
= y − qa3 − ph3sφ + qh3cφ;

Jz3,3
= ph3sφx− qh3cφx− ph3cφy − qh3sφy + h3sφa3;

whereas the inverse Jacobian matrix Jq is defined as

Jq =





h1cφ + y − a1 L1 0 0 0 0
0 0 h2cφ + px + qy − a2 L2 0 0
0 0 0 0 h3cφ − px + qy − a3 L3



 (17)

5.1 Inverse singularities

In the kinematically redundant manipulators, inverse singularities (a.k.a. Type 1 singularities)

occur when the rank of inverse Jacobian matrix Jq becomes smaller than the DOF of the moving

platform. In other words the singularity occurs when det(JqJq

T ) = 0 [1].

Considering that:

JqJq

T =





j1 0 0
0 j2 0
0 0 j3



 (18)

with

j1 = (h1cφ + y − a1)
2 + L2

1 = (yB1
− a1)

2 + L2

1

j2 = (h2cφ + p · x + q · y − a2)
2 + L2

2 = (xB2
p + yB2

q − a2)
2 + L2

2

j3 = (h3cφ− p · x + q · y − a3)
2 + L2

3 = (−xB3
p + yB3

q − a3)
2 + L2

3

Defining K1 = yB1
− a1, K2 = xB2

p + yB2
q − a2 and K3 = −xB3

p + yB3
q − a3, the singularity

condition det(JqJq

T ) = 0 can be written as:

det
(

JqJq

T
)

=
(

K2

1 + L2

1

) (

K2

2 + L2

2

) (

K2

3 + L2

3

)

= 0 (19)

It may be noted that equation (19) is satisfied if any one or more diagonal elements are null.

Thus, the condition may be expressed as

(yB1
− a1)

2 + L2

1 = 0 only if yB1
= a1 and L1 = 0

(xB2
p + yB2

q − a2)
2 + L2

2 = 0 only if xB2
p + yB2

q = a2 and L2 = 0 (20)

(−xB3
p + yB3

q − a3)
2 + L2

3 = 0 only if − xB3
p + yB3

q = a3 and L3 = 0

2009 CCToMMM3 Symposium 9



A1,B1

A2,B2

A3,B3

a) b)

A1,B1

B2

A3

A2

B3

Figure 4: Inverse singularity when a) all branches are in a singular configuration, i.e., K2
i +L2

i = 0
with i = 1, 2, 3 and b) branch 1 is in a singular configuration, i.e., K2

1 + L2
1 = 0.

Figure 4a shows the singularity condition when all diagonal elements in equation (18) are equal

to zero whereas Figure 4b shows the pose whenever only branch 1 is in a singular configuration, i.e.

K2
1 + L2

1 = 0, where both prismatic joints on leg 1 are parallel. Note that, although not necessary,

φ has been arbitrarily set to 0 in both figures.

If at least two diagonal terms are zero (Figure 4a) the moving platform looses all its DOF since

at least two Bi are fixed. If one (Figure 4b) diagonal term is zero the moving platform preserves

only one DOF.

5.2 Direct singularity (Type 2)

The forward Jacobian matrix Jz in equation (15) can also be expressed as:

Jz =





xB1
yB1

− a1 h1 [a1sφ − (xB1
cφ + yB1

sφ)]
xB2

− pa2 yB2
− qa2 h2 [a2sφ − (xB2

cδ + yB2
sδ)]

xB3
+ pa3 yB3

− qa3 h3 [a3sφ − (xB3
cλ + yB3

sλ)]



 (21)

where δ = φ + 2π/3 and λ = φ− 2π/3.
One condition for Jz to be singular is if all the element in any given row or column are null.

Consider, at first, the rows of Jz. Thus, Jz would be singular whenever:

xB1
= 0, yB1

= a1 for any φ

xB2
= pa2, yB2

= qa2 for any φ (22)

xB3
= −pa3, yB3

= qa3 for any φ

It should be noted that equations (22) provide the same manipulator poses obtained by equa-

tions (20). For that reason they cannot be considered neither Type 1 or Type 2 singularities [15].

Now, consider whenever the columns of Jz are null.

xB1
= 0, xB2

= pa2; xB3
= pa3 (23)

This condition means that links AiBi are all parallel to each other (Figure 5a). On the other hand,

yB1
= a1, yB2

= qa2 and yB3
= qa3 (24)

means that the manipulator is in the pose shown in Figure 4a.
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A3
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B3

B2

φ

A2

Σ2α2 − ε

φ

π/6
A1

a) b)

B1

B3

Figure 5: Direct singularity when a) Jzi,1
= 0 and b) Jzi,3

= 0.

Finally,

xB1
cφ + yB1

sφ = a1sφ, xB2
cδ + yB2

sδ = a2sφ, and xB3
cλ + yB3

sλ = a3sφ (25)

represent the condition where links AiBi intersect in the moving platform’s centroid. Figure 5b

illustrates the geometrical interpretation of equations (25). For instance, consider equation (25) for

leg 2, where the singularity condition can be re-written as:

b2 sin (α2 − ε) = a2sφ (26)

where xB2
= b2cα2

, yB2
= b2sα2

and ε = φ + π/6. This condition is satisfied if and only if line Σ2

(Figure 5) passes trough the centroid of the equilateral triangle formed by the moving platform4.

Similarly it can be shown that the same physical condition applied for legs 1 and 3.

Direct singularities also occur whenever there is linear dependency between rows/columns.

More specifically:

• Linear dependency between columns 1 and 2 occurs when AiBi (i = 1, 2, 3) are parallel.

• Linear dependency between columns 1 and 3 or 2 and 3 occurs when AiBi for i = 1, 2, 3 all

intersect at a common point.

• Linear dependency between rows j (j = 1, 2, 3), and k (k = 2, 3, 1) occurs whenever AjBj

and AkBk coincide with the edge BjBk of the end effector platform.

6 CONCLUSION

The analysis of the new 3-PRPR kinematically redundant planar parallel manipulator was pre-

sented in this paper. From the analysis it was found that there are at most six solutions for the

forward displacement problem. Conversely, due to the three degrees of kinematic redundancy of

the manipulator, the inverse displacement problem has∞3 solutions since equations (14) represent

three circle of radius Li and the y-coordinate of the centre being dependent on ai. It was also shows

that, for the symmetrical 3-PRPR, the orientational workspace is a circle. The presence of two P
pairs for each branch substantially increases the workspace whose radius is directly proportional

to the upper limit of the prismatic joints. A thorough inspection of the singularities shows that

inverse singularity configurations cannot occur in practice as these configurations require Li = 0
whereas they would normally be different from zero by construction.

4Σ2 is a line in the direction of the leg L2 and passing through point A2.
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