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Abstract

In this article, the workspace of planar wire-actuated parallel manipulators is studied. The investigation is
based on two methods: an analytical method which formulates the workspace envelope by means of
Cramer’s rule pertaining to the Jacobian matrix and the null space method from static analysis of
manipulator. The workspace envelope method is also extended to analyzing redundant planar
manipulators and planar manipulators with an external wrench or gravity modelled as an additional wire.
It is discussed that the null space method gives a more realistic workspace formulation as it takes into
account wire tension limits, while the workspace generated by the workspace envelope method assumes
very large wire tensions are possible. The workspace envelope method plots an analytical function as the
border of the workspace so a much higher resolution representation of the wrench closure workspace is
possible.
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1 INTRODUCTION

The workspace analysis is a key requirement in the design of robot manipulators as it identifies the set
of locations in which a robotic manipulator can operate. Without defining the workspace, the operator
would not be able to properly use the manipulator, constantly attempting to position the manipulator in
poses (positions and orientations) not actually reachable by the manipulator while maintaining control.
The workspace of planar wire-actuated parallel manipulators is formulated in this paper. Parallel
manipulators consist of closed loop of links connected together with joints. The legs or branches of a
parallel manipulator are kinematic chains of links and joints that connect the base platform to the mobile
platform (end effector). A manipulator is called planar if all the rigid bodies are confined to motion on a
plane or parallel planes.

If each leg of a planar parallel manipulator is replaced by a single wire, the manipulator is referred to
as a planar wire-actuated (or wire-suspended) parallel manipulator. Examples of these manipulators can
be seen in Figure 1. Actuated spools at the base are the most common method of controlling the wires.
The pose of the mobile platform is controlled by manipulating the lengths of the wires. There are many
advantages of using wires over rigid body linkages, such as the light weight and long range of wires
which allow high speed motion and large workspaces.

Similar to constraining an object to planar motion with three degrees of freedom (DOF), two
translations and one rotation, with four frictionless contact points [1], at least four wires are required to
control a planar manipulator with the same three degrees of freedom.

The set of locations where a wire-actuated manipulator has force/moment (wrench) closure, i.e., when
all wire tensions are positive for any given external wrench applied to the mobile platform, is the wrench
closure workspace (WCW). Discrete workspace models based on wire tension have been investigated for
wire-actuated parallel manipulators, e.g., [2]-[4]. Analytical methods, which define the workspace
boundary, have also been presented, e.g., [5]-[6]. The discrete workspace models based on wire tension
can account for external wrenches acting on the mobile platform, such as gravity, while the analytical
models presented do not. The minimum and maximum tensions of the wires are accounted for only in
these discrete workspace models. An iterative calculation of wire tensions method (based on the null
space of Jacobian matrix) and an algebraic (convex hull) method of calculating the workspace of planar
wire-actuated parallel manipulators was investigated in [7]. Methods based on the antipodal theorem from
grasping manipulators were presented and applied to the non-redundant planar wire-actuated parallel
manipulators in the absence and presence of gravity and external wrench in [8]-[9].

The workspace of planar wire-actuated parallel manipulators, based on the wire tension and also using
an analytical formulation of the null space of the transposed Jacobian will be investigated in this article.
The manipulator parameters and workspace formulation based on wire tensions are reported in Section 2.
A technique based on Cramer’s rule for formulating the workspace is presented in Section 3. The
simulation for both methods is discussed in Section 4. The conclusions of the article are stated in Section
5.
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Figure 1 Example planar wire-actuated parallel manipulators.
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2 KINEMATIC AND STATIC MODELS

To investigate the workspace of a manipulator, fixed and moving coordinate systems are assigned. The
coordinates and parameters for a planar wire-actuated parallel manipulator are shown in Figure 2. The
base has the fixed coordinate system ¥(X, Y) located at 0, while the mobile platform has a coordinate
system, ['(X’, Y’), fixed to the center of mass point P; P has coordinates (x, y) in (X, Y). The mobile
platform is connected to the base by n wires each with length /;. The attachment points of the wires to the
base platform, anchors, are denoted A4,, while the attachment points on the mobile platform are denoted B..
The angle at which the mobile platform is oriented with respect to W(X, Y) is given as ¢ and the
orientation of lines PB; with respect to the mobile platform frame I'(X’, Y’) are given by angles 6. For
the following analysis, all of these parameters are assumed to be known.

Figure 2 Coordinates and variables for planar wire-actuated parallel manipulators.
The position vector of point 4; with respect to the fixed frame is “a, = [a, aq 1", and the position
vector of point B; with respect to I'(X', Y') is given as 'b; = [b,cos O, b, sinb, 1%, i=1, ..., n, where b;

is the length of the line segment PB, . To find the vector of the magnitude and direction of each wire,

[ a, —x—b, cos . cos@+b.sin 0, sin
“I,="a,-"b,=| " |=] " ’ (COSPT S E G , i=1..,n (1)
! ' L a, —y—b,cos 6 sin p—b,sin 6, cos ¢
To determine the wire forces, t;, the static force balance is required as follows.

ZE‘C :chrix :Zri Cosa:chrix (21)

1
Y F =F, ,—mg=)Y rsna=F,  —mg (2.2)

1
ZMZ :Mext_z :ZTZ-VZ- :Mext_z (23)

1

where cosa, =1, /|I,|> sing, = L /HlfH’ m is the mass of the mobile platform, g =9.81 m/s’ is the gravitational

li

constant, F F and M are the external force and moment acting on the mobile platform,

ext_x? ext_y ext_z
and v; is the normal distance from point P to each wire axis. Using matrix notation, force and moment
balance equations (2.1)-(2.3) can be written in terms of the transpose of Jacobian matrix

F=J"1 A3)
where F = [F (F 0y mg) M miz]r is the static wrench of mobile platform, T=[z, --- 7, [ is the

ext_x e

vector of wire tensions, and the 3xn J° matrix, #n>3, is
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cosa, cosa,
JT: Sinal sinan @)
(\Pblx —x)sin a, —(Wbly —y)cosa1 (\anx —x)sin a, —(“’bny —y)cosan

For a given F, the wire tensions need to be positive for the mobile platform to be in the feasible
workspace. Because J” is not square its generalized inverse (Moore-Penrose inverse), J*" = J(J'J) ", is
used to solve for force analysis.

T=J"F+(-J"I7 5)
where J*'F is the minimum norm or particular solution and the second term is the homogenous solution in
which (I-J*J") maps the free vector A to the null space of J”.

The free vector, A, is chosen such that positive tension is maintained in wires. Testing each location
and choosing a A that results in 70, i = 1, ..., n guarantees that the location is inside the workspace. This
is referred to as the null space method for calculating the workspace.

The calculation of A depends on whether or not the manipulator has redundancy and/or is under the
action of external wrench. For the case without redundancy, i.e., when the null space basis is defined by a
vector, and there is no external wrench, J*'F = 0, then in equation (5) the wire tensions are calculated
based only on the null space. Thus, all the entries of the vector that spans the null space should be either
positive or negative so that a scalar A can be chosen that results in all positive tensions. For the case
without redundancy and a non-zero external wrench, the null space vector may have positive and negative
entries. The A is chosen by comparing the positive and negative values of the minimum norm solution to
the entries in the null space vector to determine if it is possible for all wire tensions to be positive. For the
case that the manipulator has redundancy, the null space is spanned by multiple vectors. If an external
wrench is applied to the redundant manipulator, it is possible to identify the entries of A by finding the
intersections of the functions described by the rows of the matrix equation (5) because the minimum norm
solution is non-zero. For the case of redundancy, in the absence of an external wrench, without loss of
generality one entry of A is assumed to be one and the other entries of A can be solved by finding the
intersections of the functions described by the rows of the matrix equation (5).

3 WORKSPACE ENVELOPE CHARACTERIZATION

The workspace boundary of a manipulator is defined as a set of singularities that enclose the area
which has feasible wire tensions. Thus, it is possible to determine the workspace of a manipulator without
examining all potential locations. The determinants of the minors of the Jacobian matrix to define the
workspace envelope of wire-actuated parallel manipulators were investigated in [5] and [6].

The transposed Jacobian of a wire-actuated parallel manipulator with m degrees of freedom and n
wires will have a null space spanned by n—m vectors with dimension #» X 1. When n = m+1 the null space
is spanned by a single #n X 1 vector and if all the entries of that null space vector are strictly positive or all
the entries are strictly negative then the wire tensions can be positive for any external wrench. This is
because, for any value of the particular solution, there exists a value of A that can generate positive
tensions, including poses that require very large wire tension. The collection of manipulator poses that
generate all positive or all negative null space entries comprise the WCW because any external wrench
can be withstood by the manipulator. For a specific external wrench applied to the mobile platform, there
may exist a null space vector that has both positive and negative values which can generate positive wire
tensions. Hence, for this case the workspace formulated by identifying the loci that correspond to null
space vectors with all positive or all negative entries may not be the complete workspace of the
manipulator.

When n = m+1 the manipulator will have the minimum number of wires required and will be referred
to as “non-redundant”. In this case, Cramer’s rule, [10], for the solution of linear matrix equations could
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be applied to calculate the » X 1 null space vector of the transposed Jacobian in terms of the pose of the
mobile platform (location x and y, and orientation ¢). For a planar wire-actuated parallel manipulator with
n = m+1 wires, in the absence of external wrench, using C; as the i column of the transposed Jacobian,
where C; is a 3 X 1 vector , equation (3) reduces to
z-l
c, - ¢,] :i|=¢C +...47,C, +...47,C, =0, (6)

T

n
The j™ wire tension, 7, could be set to one and the expression be rearranged so a square matrix is
formed, e.g., by setting 7, to one
7

c, - c.] i |=-C,, (7)

n

T

n—1

By replacing 7;, Cramer’s rule can be used to solve for tensions 7, for i = 1,...,n,

_ ‘ [C,C, C,,C,,C,,-C,C,, -C,]

, , i=1,...,nand; #i (®)
‘[C1 Cj—l Cj+1 Cn]
It should be noted that 7; can be written as
C, -~ C_, C, C,1
r,=1= 1 UREAL )
‘[Cl Cj—l Cj+1 Cn]

Changing the sign of a column or switching the location of any two columns, the sign of the

determinant is inverted resulting in the following expression for z;, when 7; = 7,.
r = (_1) [C,C,C,C - C] =l (10)

i |[C1 Cn—l]|
Then, the submatrices (minors) of J* can be denoted M, = [C1 Cc,---C_,C, - Cn]. Since the
denominator is the same for all 7; it can be factored out from the entries of vector T. Cancelling out this
factor would result in a vector, denoted as K, that spans the null space of the transposed Jacobian
because J' =0.

K= [(—1)”‘1 detM,) (=1)"*detM,) --- (=1)det(M ) det(Mn)]T (11)
By setting each entry of K in equation (11) as an inequality, either greater than or less than zero, it is

possible to plot the loci of poses which generate a positive or negative value for that entry of K that spans
the null space. The inequalities are set up as

(1) det™M,)>0 (—=1)"" det(M,) < 0
(1) det(M,) >0 (1) det(M,) < 0

K= orK = V(x,y,p) e WCW (12)

det(M,)> 0 det(M, ) <0

which describe the conditions on the entries of the null space for poses that are contained within the
WCW for an n-wire manipulator with n = m+1 wires.

The algorithm which calculates the WCW starts by formulating the transposed Jacobian in terms of the
mobile platform pose. The planar manipulator is then checked for redundancy, if the manipulator is not
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redundant (n = m+1) then the determinants of the m X m minors of the transposed Jacobian are calculated
for equation (12). Each inequality is plotted to find the region for which that entry of the null space vector
is strictly positive. Once this is done for all entries of the null space vector, the intersection between the
positive inequalities is retained. This intersection region generates strictly positive values for all entries in
the null space vector. This is repeated for the case that all the entries of the null space vector are strictly
negative. The union of the strictly positive intersection region and the strictly negative intersection region
is the WCW of the non-redundant manipulator. The curves which define the border of the workspace,
functions obtained by changing the inequalities in equation (12) to equalities, are quadratic functions in
terms of variables x and y, the position of the mobile platform. The constant orientation WCW is
formulated by keeping a constant mobile platform orientation, ¢.

When n > m+1, the manipulator will be referred to as “redundant”. For this case, the degree of
redundancy is calculated and the m X m+1 submatrices of the m X n transposed Jacobian are formulated.
The process of identifying the contribution to the WCW of each m X m~+1 submatrix is the same as the
process for non-redundant planar manipulators. Once the contribution of each m X m+1 submatrix is
formulated and retained, the union of the contributions of all the m X m~+1 submatrices is the complete
WCW of a planar manipulator. For the planar wire-actuated parallel manipulators investigated in this
paper, the simulation indicated that considering the 3 X 4 submatrices of the transposed Jacobian correctly
identifies the WCW. For general wire-actuated parallel manipulators, investigating only the m x m+1
submatrices may not result in the entire workspace [5].

This method of formulating the WCW of planar wire-actuated parallel manipulators by investigating
the analytical solution for the null space of the transposed Jacobian will be referred to as workspace
envelope characterization. In the following section, the workspace envelope characterization and the null
space method of Section 2 will be used to investigate the workspace of the manipulators in Figure 1.

4 SIMULATION

In this section, the workspace of the planar wire-actuated parallel manipulators of Figure 1 is
investigated using the workspace envelope characterization and the null space method. In the following
simulations, the plane of motion is the horizontal plane, i.e., gravity does not affect the motion of the
manipulator, unless otherwise stated.

4.1 Non-Redundant Manipulators

The WCW of non-redundant (» = m+1) manipulators is formulated in this section. Figure 3 shows the
plots of inequalities of equation (12) for the manipulator in Figure 1(a), » = 4 and m = 3, with a mobile
platform orientation of ¢ = 5° and no external wrench acting on the mobile platform. The case shown in
Figure 3 has all equations strictly greater than zero. For the case that all entries of the null space are
strictly less than zero, there is an empty intersection between inequalities, thus the constant orientation
WCW is formulated from only those plots shown in Figure 3. In the plots of Figure 3 and following
figures, the anchor positions are represented by small circles. The complete workspace, i.e., the
intersection of regions that generate positive entries of the null space (plots of Figure 3), can be seen in
Figure 4(c).

Figures 4(a) and 4(b) depict the constant orientation WCW of the manipulator in Figure 1(a)
calculated by finding the borders of the workspace with no external wrench acting on the mobile platform
at constant orientations of @ = 0° and 2° respectively. The lines in each plot of Figure 4 show the limits of
inequalities in equation (12). The black shaded region is the workspace of the manipulator at the given
orientation. Figures 4(d)-4(f) show the workspace plots of this manipulator formulated using the null
space method with no external wrench at orientations of ¢ = 0°, 2°, 5° respectively. For the null space
method, the minimum and maximum allowable wire tensions are set to zero and 525N respectively. If a
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lower limit is considered for the maximum allowable wire tension then the workspace obtained using the
null space method would be smaller.

5 o 5 5 o 5

5
(a) (~1) det(M,)>0 (b) (1) det(M,)>0 (¢) (~1)det(M;)>0 (d) det

Figure 3 Regions enclosed by positive inequalities of equation (12) for manipulator in Figure 1(a) at ¢ = 5°.
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Figure 5 Workspace of manipulator in Figure 1(b): (a)-(c) envelope characterization method, (d)-(f) null space
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Figures 5(a)-5(c) depict the constant orientation WCW plots of the manipulator in Figure 1(b) using
equation (12) with no external wrench acting on the mobile platform at orientations of ¢ = 0°, 5°, 20°
respectively. Figures 5(d)-5(f) show the workspace plots of this manipulator formulated using the null
space method with no external wrench at orientations of ¢ = 0°, 5° 20° respectively. Any difference
between the plots obtained with the workspace envelope characterization and the plots obtained with the
null space method is from the minimum and maximum wire tensions that are taken into account in the
null space method and also the high resolution possible with the envelope characterization method.

4.2 Manipulator with External Wrench

The effect of gravity and external wrench on the workspace of the manipulator in Figure 1(b) is
investigated in this section. Only the manipulator in Figure 1(b) is investigated in this section because the
workspace of this manipulator is larger than the workspace of the manipulator in Figure 1(a) and larger
orientations are possible for this manipulator compared to the manipulator in Figure 1(a). When using the
workspace envelope characterization it is possible to model gravity as a wire acting on the mobile
platform. By modelling gravity as a wire with constant force and constant direction, a four-wire-actuated
parallel manipulator is modelled as a five-wire manipulator. The Jacobian is modified to include an extra
column for a wire which represents the gravitational force and is constantly pulling in the negative Y-
direction. The magnitude of the gravitational term is taken as the “tension” and the column added to the
transposed Jacobian is [0 —1 0]". Since the workspace envelope characterization only investigates
properties of the Jacobian matrix it does not take into account the magnitude of the gravitational force.
Therefore, the workspace results for a manipulator with gravity are the same as the results of the
workspace with a large external force in the negative Y-direction using this workspace envelope
formulation. The simulations using this method would result in a workspace larger than the actual
workspace for the manipulators with low specific mass for mobile platform or manipulators operating in
environments where the gravitational acceleration is not as high, so the weight (mg) of the mobile
platform will be low

For a five-wire planar manipulator, the workspaces of the five different combinations of four wires are
investigated. The union of the workspaces of the four-wire combinations is the workspace of the “five-
wire” manipulator. The 3 X 4 submatrices of the transposed Jacobian correctly formulate the WCW of this
manipulator. For this WCW, the four-wire manipulator can withstand any external wrench only if the
specific wrench (modelled as a wire) is applied to the manipulator.

Figure 6 shows the WCW corresponding to four wires/forces at a time formulated using equation (12)
for the four-wire manipulator in Figure 1(b) under the action of gravity. Each plot in Figure 6 depicts the
anchor positions corresponding to the wires being investigated for that plot. For the plots of Figure 6, all
intersections of the inequalities that are less than zero are empty, so the WCW is formulated from only the
inequalities that are greater than zero. The orientation of the mobile platform is 20° for the plots in Figure
6. The union of the workspaces in Figures 6(a)-6(e), shown in Figure 6(f), depict the WCW of the
manipulator in Figure 1(b) with a large external force in the negative Y-direction. The WCW in Figure
6(f) has a shape that tapers to infinity in the negative Y-direction. As the mobile platform descends in the
negative Y-direction, the wires become parallel at infinity and the manipulator will be uncontrollable.
Figures 7(a)-7(c) depict the WCW for the manipulator in Figure 1(b) with gravity obtained at orientations
of ¢ = 0° 5° and 30°. Figures 7(d)-7(f) show the workspaces for this manipulator with gravity formulated
with the null space method at orientations of ¢ = 0°, 5°, and 30°. Any difference between the workspace
plots of the two methods is due to the wire tension limits that the null space method takes into account
and also the high resolution possible with the plots of envelope characterization method.

The manipulator in Figure 1(b) was also investigated with a large force acting in the positive X-
direction and a large positive moment acting on the mobile platform by inserting columns [1 0 0]” or [0 0
11" into the transposed Jacobian. Using any normalized direction vector for the first and second entries of

2009 CCToMM M? Symposium 8



the extra column allows the workspace to be calculated with a large external force acting in that direction,
such as [0.707 0.707 0]" for an external force acting at 45° counter-clockwise from the X-axis. The WCW
formulated with workspace envelope characterization method for these cases can be seen in Figures 8(a)-
8(c), the workspace calculated with the null space method, with an external force of 100N or an external
moment of 100Nm are shown in Figures 8(d)-8(f). The orientation of the mobile platform is ¢ = 20° for

all plots in Figure 8.
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Figure 6 Workspaces corresponding to combinations of four forces for the manipulator in Figure 1(b) acting under
gravity at ¢ = 20°.
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Figure 7 Workspaces of manipulator in Figure 1(b) with gravity: (a)-(c) envelope characterization method, (d)-(f)
null space method.

By applying an external wrench to the mobile platform, the workspace can be altered to have more
desirable characteristics. Comparing the WCW plot of Figure 5(c), formulated with a zero external
wrench, and the WCW of Figure 8(b), formulated with a large external moment, which are calculated for
the same manipulator and mobile platform orientation of ¢ = 20° there is a large difference in the
workspace shape and size. The workspace of Figure 8(b) is much larger and thus desirable compared to
the plot of Figure 5(c) , and as depicted, it is similar to the workspace of Figure 5(b) with orientation of ¢
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= 5°. By applying an external force in a certain direction, the workspace will increase in that direction, as
can be seen in Figures 8(a) and 8(c). Applying an external moment in the same direction of mobile
platform orientation increases the workspace until it is similar to the zero orientation workspace, as
depicted in Figure 8(b), the larger the mobile platform orientation the greater the increase in workspace
area. If the mobile platform orientation is zero there is no increase in workspace size with an external
moment.

4 4
2 2
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4 -4
=
b 0 5 g 0 5
(a)Large force in X-direction, (b) Large positive moment, envelope (c) Large force at 45° to X-axis,
envelope characterization method characterization method envelope characterization method
4 4
o o o
2 2
0 0
9 2
o o
-4 -4 -4
£ 5 5
5 0 5 5 0 5 5 0 5
(d) 100N force in X-direction, null (e) 100Nm positive moment, null (f) 100N force acting at 45° to X-
space method space method axis, null space method

Figure 8 Workspaces for large external force and moment acting on the mobile platform ¢ = 20°.

The tapering of the WCW for the large force acting in the negative Y-direction, i.e., gravity, and lack of
tapering for the WCW for the large force acting in the positive X-direction is affected by the shape of the
mobile platform. Since the mobile platform is in a horizontal position at zero orientation and the wire
connection points on the mobile platform are one unit apart along the X-axis, when the manipulator
moves along the Y-axis beyond the lower anchor positions the workspace tapers because the wires
approach a parallel configuration. When the mobile platform moves along the X-axis the wire connection
points on the mobile platform are at the same point along the Y-axis, thus the mobile platform must be at
a location much further along the X-axis for the wires to approach a parallel configuration.

4.3 Redundant Manipulator (n>m+1)

To further investigate the affect of redundancy on the workspace of wire-actuated parallel
manipulators, equation (12) is used to formulate the workspace of the manipulator in Figure 1(c). Since
this manipulator has six wires there are a total of 15 combinations of four wires that generate overlapping
sections of the workspace of redundant manipulator.

Figure 9 depicts the workspaces of each of the 15 four-wire combinations for a mobile platform
orientation of ¢ = 20° and with zero external wrench. The set of anchors that are used for each
combination are shown in each plot. Each plot of Figure 9 is formed from the union of the regions that is
the intersection of all positive entries of the null space vector, as with previous cases the intersection of all
the negative entries of the null space vector is empty. The union of these 15 combinations can be seen in
Figure 10(c) resulting in the WCW of the manipulator in Figure 1(c) at ¢ = 20°. Figures 10(a) and 10(b)
show the complete WCW of the manipulator in Figure 1(c) at orientations of ¢ = 0° and ¢ = 5°. Figures
10(d)-(f) depict the workspace plots of this manipulator formulated with the null space method at
orientations ¢ = 0°, 5°, and 20° respectively. Again, any difference between the workspace plots of the

2009 CCToMM M’ Symposium 10



two methods is due to the wire tension limits that the null space method takes into account and also the
high resolution possible with the plots of envelop characterization method.
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Figure 9 WCW using workspace envelope characterization of four wires of manipulator in Figure 1(c) at ¢ = 20°.
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Figure 10 Workspaces of manipulator in Figure 1(c).

S CONCLUSION

In this article, it was presented that the workspace of 3 DOF planar wire-actuated parallel manipulators
can be formulated utilizing an analytical method which describes the border of the workspace. The
proposed method is based on the determinants of the 3 X 3 minors of the transposed Jacobian that
characterize the null space of the Jacobian matrix. The intersection of the regions that generate all positive
determinants of the 3 X 3 minors and intersection of the regions that generate all negative determinants
form the workspace of a planar manipulator with four wires. It should be noted that for all cases tested in
this paper, the intersection of regions that generate all negative determinants were empty, thus all
workspaces were formulated from the intersection of the regions that generate positive determinants. The
wrench closure workspace, with constant orientation of the mobile platform, was calculated for three
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manipulators: two non-redundant four-wire-actuated manipulators and one six-wire-actuated manipulator.
For redundant manipulators, the workspace was investigated by extending the workspace envelope
characterization method and investigating the contribution of each set of four wires. Through simulation,
the complete WCW of the manipulators presented in this paper were obtained by considering the 3 x 4
submatrices of the transposed Jacobian. In general, investigating the m X m+1 submatrices may not be
sufficient to generate the complete WCW. It was shown that modelling gravity/large external wrench as a
wire and investigating each combination of four “wires” allowed the WCW formulation of manipulators
acting under gravity/large external wrenches. In these WCW, the four-wire manipulator can withstand
any external wrench only if the specific wrench (modelled as a wire) is applied to the manipulator.

Applying a large external wrench on the mobile platform drastically changes the shape and size of the
workspace. The plots of the WCW with a large external force will be larger in the direction of that force.
By applying a large external moment on the mobile platform, the workspace region does not change for a
zero mobile platform orientation. The greater the orientation of the mobile platform is, the greater the
increase in the size of the workspace will be when a moment in the same direction as mobile platform
orientation is applied. It should be noted that a moment in opposite direction of orientation will result in a
smaller workspace. By applying an external wrench to the mobile platform, it is possible to increase the
size and/or change the shape of the workspace accordingly.

All workspaces calculated with the workspace envelope method match workspaces formulated with
the null space method. The null space method gives a more realistic workspace formulation because it
takes into account the minimum and maximum wire tensions. The workspace envelope method assumes
that very large wire tensions is possible and identifies the maximum wrench closure workspace. Since the
workspace envelope method plots an analytical function as the border of the workspace a much higher
resolution representation of the workspace is possible compared to the null space method. There is no
significant difference between the calculation speeds of the two methods. The null space method is more
useful when investigating the design constraints of a manipulator to be manufactured while the workspace
envelope method identifies the maximum possible workspace where any external wrench can be resisted.
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