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Abstract

This paper presents design and implementation of a systematic fuzzy modelling methodology for the
inverse dynamic modelling of robot manipulators. The fuzzy logic modelling methodology is motivated
in part by the difficulties encountered in the modelling of complex nonlinear uncertain systems, and by
the objective of developing an efficient dynamic model for the real-time model-based control. The
methodology is applied to build the fuzzy logic-based inverse dynamic model of a wire-actuated parallel
manipulator with uncertain dynamics. The developed inverse dynamics has been used in a fuzzy model-
based adaptive robust controller for the tracking control of the parallel manipulator.
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1. Introduction

Robot manipulators are inherently complex and nonlinear uncertain systems. That is, it is not that possible
to obtain their accurate model due to large dynamic coupling between different links, hard nonlinearity
(e.g., Coulomb friction) and time-varying characteristics of the manipulators. To accommodate system
uncertainties, variation of the parameters with time and disturbances; learning, reasoning, decision
making and advance modelling techniques should be incorporated in the controller. Very often the
approximation capabilities of the fuzzy systems are used for compensating the unknown dynamics or
particular component of the dynamics of manipulators. For instance, in [1] a fuzzy system was utilized to
compensate for the friction and payload variation, and in [2] a fuzzy system was used as an adaptive
approximator for modelling a manipulator dynamics. Systematic fuzzy modelling of manipulator inverse
dynamic model from input-output data was presented in [3]. In [4] fuzzy logic was applied for controlling
a flexible link robot arm.

The inverse dynamic model of a robot manipulator is required to generate the control input (i.e., joint
torques/forces). In addition, the size of the uncertainties can be reduced, to a large extent, by having a
good dynamic model of the system, which in turn reduces the chattering and helps to stabilize the closed-
loop system. In the following subsections, the general inverse dynamic model and fuzzy inverse dynamic
model of manipulators are discussed.

1.1 General Inverse Dynamic Model

The inverse dynamic model of manipulators can be described as
T=M(q)q +h(q,q) (1)

where T=[7,7,,...,7 ]T is the vector of input generalized forces, and #denotes the number of

generalized coordinatgs of the manipulator. Inertia matrix M(q) is an nxn symmetric positive definite
matrix; q=[¢,,4,,.-,q, 1%, q =[4,,455---9, Tand § =[4,,455---4, ' are the displacement, velocity and
acceleration vectors of joints respectively; and

h(q.)= C@.) q +1,(q.9) +2(@) +y @)
where C(q, q) is an nxn matrix of centripetal and Coriolis terms, f P is an nx 1 vector denoting viscous

and Coulomb friction forces, g(q) is an nx1vector of gravitational terms, and f_, is an nx1 vector

Xt
denoting the actuator reaction forces/torques corresponding to the external forces/torques on the end
effector. For parallel manipulators, equation (2) may contain another term due to the holonomic
constraints  because of the closed-loops and existence of passive joints, e.g.,
h(q,q9)= C(q,9) q +f @9 +g(@ +f. +F'A where 4 is the vector of Lagrange multipliers and Fc
accounts for constraint forces induced by closed-loop kinematic chains [5].

Because of the system uncertainty and external disturbances, equation (1), which describes the dynamic
model of a manipulator, is not exactly known. Therefore, the dynamic model of manipulators is as

T =(M(q, )+AM(q. 1) |§ +(h(q. 4.1)+ Ah(q, 4.1) |+ d(2) 3)

where M(q, #) and ﬁ(q, q,?) are the known (estimated) parts and AM(q,?) and Ah(q,q,?) are the
unknown parts of M(q,?)and h(q, q,?) respectively, and d(¢) is an nx1bounded vector arising from the
external disturbances. Based on equations (1) and (3), the following expression holds

F(q,4.6.) =F(q,4.4,0 + F(q, 4,G.0) (4)
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where F(q,4,4,1)=M(q)§ +h(q.9), F(q.4,4./)=M(q)ij +h(q.q) is the known (approximated) part of
the manipulator inverse dynamic model and can be approximated using the fuzzy modelling method of [6,
7], and F(q, q,4,7) = AM(q, £)§ + Ah(q, 4,7)+d(¢) is the uncertainty vector of the inverse dynamic model.

1.2 Fuzzy Inverse Dynamic Model

The fuzzy dynamic model considered here is a qualitative explanation of the behaviour of manipulator in
the framework of fuzzy logic (in the form of IF-THEN rules) instead of a mathematical equation.
Conceptually, a multi-input-multi-output (MIMO) system with multiple independent outputs can be
considered as a set of multi-input-single-output (MISO) systems [8]. In the inverse dynamic problem of a
manipulator, the torque of each joint is a function of position, velocity and acceleration of that joint and
the other joints. Therefore, for an » DOF manipulator, a MISO fuzzy model for joint £ (k = 1, ..., n)
expresses variation of the torque/force of that joint, as a result of the motion of all joints, in the following
form of the rules

R;: IF ¢q, is A;, AND gq, is 4, AND ... AND ¢, is 4;,, THEN 7, is B, (5)

where R;is the i-thrule (i=1, ..., ¢), and ¢y, ..., ¢, are the main input variables for joint &, k=1,..., n, that
are identified among the elements of the joint displacement, velocity and acceleration. Fuzzy sets 4;; (j =
1, ..., r) in the antecedent (IF part) are associated with » input variables, 7, is the output torque of joint k

and fuzzy set B; in the consequent (THEN part) represents the output membership function of rule i.

The four principal components of a fuzzy system with crisp (non-fuzzy) inputs and outputs are
fuzzification, fuzzy rule base, reasoning mechanism (also called fuzzy inference), and defuzzification [9].
The fuzzification refers to replacing the crisp input with a set whose boundaries are fuzzy, i.e., fuzzy set.
As the central part of a fuzzy system, fuzzy rule base (a set of rules in the form of IF-THEN statements,
also referred to as fuzzy model) describes the system behaviour. The reasoning mechanism is a decision
making logic which employs fuzzy rules from the fuzzy rule base to determine the fuzzy outputs
corresponding to the fuzzified inputs of the fuzzy system. The process of transforming the fuzzy output of
a fuzzy system to non-fuzzy output (crisp output) is called defuzzification.

The methodology of fuzzy model construction from available input-output data is based on the
improved systematic fuzzy modelling method through the following steps.

1. Generating/finding the optimum number of rules that can describe the behavior of a dynamic system
accurately and robustly in whole domain of interest.

Finding/selecting the minimum number of input variables (referred to as the “main inputs”).

3. Designing the antecedent and consequent parts of each rule, which means how to partition the input
space and output space respectively and how to assign the membership function to each partition.

Designing/selecting the appropriate reasoning mechanism.

5. Parameter identification (parameters of the clustering algorithm and parameters of the reasoning
mechanism) and parameter tuning procedures.

2 Fuzzy Logic-Based Modelling of a Wire-Actuated Parallel Manipulator

In this paper, the improved systematic fuzzy logic modelling methodology from available information
(e.g., a simplified analytical model) and experimental data (input-output data of a real system), proposed
in [6, 7], is applied for developing an adaptive fuzzy-logic based inverse dynamic model of a 4 degrees of
freedom (DOF) wire-actuated parallel manipulator depicted in Figure 1.
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Figure 1. Wire-actuated parallel robot manipulator.

The manipulator has been designed for digging and soil sampling at the planetary explorations [10, 11].
The manipulator consists of a constraining linkage with seven joints and six links (excluding the base
link) and three wires. The four degrees of freedom of the manipulator are controlled by five actuators
(motors). All motors are 24 V DC servo motors equipped with gear reducers and encoders. The actuated
joints one and two each is coupled with internal and external planetary gearboxes with a gear reduction of
134 to 1 and 4 to 1 respectively. The motion of joints four and five (each equipped with an encoder but no
motor) are controlled by three actuated wires; since wires can only pull thus redundant actuation is
needed. The motors of wires one and two are coupled with a gearbox with a gear reduction of 12.5 to 1
and the gearbox of wire three motor has a gear reduction of 45.5 to 1.

To construct the fuzzy inverse dynamic model of the actuated joint/wire i of the manipulator, the input-
output data set for that actuated joint/wire need to be formed. The joint/wire torque z; (output) is
proportional to the motor torque 7, of the actuated joint/wire i by its gear ratio Ng; and efficiency of gear

transmission 1M, as 7, =N N, Zmi = Ngi K7 i > where K7; and 1, are respectively the torque
constant and current of the motor. The pertinent specifications for the actuators are reported in [12].

2.1 Data Acquisition and Preparation for Fuzzy Modelling

To construct a fuzzy inverse dynamic model of the parallel manipulator from input-output data, because
the manipulator has five actuators, it can be considered as a composition of five MISO subsystems. Each
MISO subsystem has one output, i.e., torque of joint/wire actuator, and 12 input candidates, i.e., position,
velocity and acceleration of the four independent joints of the constraining linkage (actuated joints one
and two and passive joints four and five). Because the configuration of the manipulator can be fully
described in terms of the motion of independent joints of the constraining linkage [11], instead of the
motion of actuated joints/wires, the motion of these four joints are used as inputs.

The first step in data driven modelling (i.e., modelling from input-output data) is to obtain an adequate
amount of input-output data by moving the manipulator along different trajectories, and measuring the
displacements (and velocities and accelerations) and torques. Since the test-bed is not equipped with
velocity and acceleration sensors, the on-line calculation of velocity and acceleration is performed by a

backward difference method as q(k)=(q(k +1)—q(k—1))/2T and (k) =(q(k+1)—2q(k) +q(k - 1))/T2 ,
where q(k) indicates the joint positions at the k-th sample and T is the sampling period. To have a rich
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yet small number of identification data (training data) and excite significant number of modes of the
manipulator, random trajectories and harmonic trajectories with different frequencies and maximum
desired amplitudes within the manipulator workspace are generated in the Simulink environment. To
excite the wires, as wires can only pull, several harmonic and periodic trajectories are generated using the
inverse kinematic model of the manipulator. It should be noted that when the exciting frequencies contain
low-frequency motion friction effects become dominant, and when they contain high-frequency motion
inertial effects are dominant.

Because the first derivative (velocity) and especially the second derivative (acceleration) of positions
amplify the high frequency noise, the displacement reading is filtered using the digital low-pass
Butterworth filter (recommended by many researchers) prior to computing the velocity and acceleration
signals. To find a proper cut-off frequency of the filter (to keep the useful information while rejecting the
high frequency components), initially the acceleration of a known trajectory (e.g., sinusoidal) was
compared with the measured and filtered acceleration of corresponding known trajectory. Then, since the
measured torque of each joint/wire actuator contains the effects of accelerations of all joints/wires, based
on the power spectral analysis of the actuator torques, the cut-off frequency of 35 Hz and 30 Hz were
obtained respectively for joints and wires. Because arbitrary random excitation cannot be applied to wires
(wires can only pull) the 30 Hz cut-off frequency for wires was obtained mostly by trail and error.

The collected data are categorized for three purposes. The main part (about 80%) of the data (training
data) is used for structure identification (generating fuzzy IF-THEN rules) that includes the output data
clustering, main input selection, and input-output membership assignment. Part of the remaining collected
data (tuning data) is used for parameter identification that includes the weights of fuzzy rules. The
remaining data are used for fuzzy model validation by comparison of the output of fuzzy model with the
measured torque of joint/wire actuators.

2.2 Fuzzy Model

The fuzzy logic-based inverse dynamic model of the manipulator is developed according to the fuzzy
modelling algorithm in Figure 2, which is based on the proposed fuzzy modelling procedure of [6, 7]. The
fuzzy modelling procedure consists of structure identification and parameter identification.

For structure identification, to build the fuzzy model, the output data, i.e., torque of joint/wire actuators,
are clustered using the fuzzy c-means algorithm given in [7]. To determine the correct number of
clusters/rules ¢ (number of groups that exist in the data), i.e., for well-separated and compact clusters, the
cluster validity index S, of [13] is used

Se =0 D ()" (k=i P-i—1?) ©)

where N is the number of data vectors and u;; is the membership degree of each data point to each cluster

. @/m-nT"
ik = E{EEJXJJ )

=l

calculated as

The fuzziness parameter is denoted as m, |.| is the Euclidean norm, x; is the k-th data point,

N N . _ .
Vi =D )" xk/zkzl(”ik)m is the cluster centre, and v =Y >N (yir)" xk/zleszzl (ui)™ is the
fuzzy total mean vector which represents a weighted mean of data considering their membership to each
of the clusters in fuzzy partition.
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Using the cluster validity analysis, the optimum number of clusters is investigated for each joint/wire as
depicted in Figure 3. Then, the main input variables for each joint/wire are identified based on the
quantitative 7 index [7] that is computed for each joint and wire for the selected number of rules
(clusters) ¢ and different values of the fuzziness parameter m as

c zzrf
Tj= Hi=1—J (&)

max(x j)

where T';;is the set of inputs x; withuy, =1, =1, 2, ..., r,i=1,2,...,cand k=1, 2, ..., N, in the i-th
cluster (rule), and ry is the number of input candidates. Equation (8) is concluded from the fact that, in the
calculation of the firing strength (antecedent aggregation) w, of the i-th rule, either with the algebraic
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product operator or with the min operator, the membership degree “one” is the neutral element. Therefore,
the input variables with many “one” elements in their membership function correspond to a large value of
z (ineffective inputs), and can be discarded from the input candidates. That is, a small value of 7
represents a more dominant input. The main input selection results are listed in Table 1; for each column,
the highlighted 7 indices represent the corresponding main inputs of each actuated joint/wire.

4
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:1.24\
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S (c)
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Figure 3: Cluster validity indices for the five actuators of manipulator.

To produce the antecedent fuzzy set of each rule, the selected main inputs are partitioned into the
appropriate fuzzy sets, using the technique suggested in [13], to form the trapezoidal membership
functions for each input. In this method, the membership degree of the peak points (data points with
membership degree of “one” or close to “one”) are the same for the input and output clusters and the

membership degree of the remaining data points, e.g., j-th input variable, are calculated as
(1/m-1) -1 ) (1/m-1) -1

1
4 ‘xjkfv,-j 4 ‘xjkfv,-j

Max Z

1 ’ 2
I=1 ‘xjk*V/j ‘ Jj=1 ‘xjk"’/j ‘

. 1 2
.Xjk <Vij orxjk >Vij

©)

() _
Ui =
1 WV <X <V

fori=1,2,...,¢; j=1,2,...,r;and k=1, 2, ..., N; where r is the number of main input variables, x; is
the k-th data of j-th input variable and v,-jl and v,-j2 are points on the i-th cluster of j-th axes of input
variables x; (j =1, 2, ..., r), which have output membership degrees equal or close to one. At this point,

the structure of the five MISO fuzzy models of the five actuated joints/wires has been identified.
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Table 1. Main input indices of actuated joints and wires.

Joint 1 Joint 2 Wire 1 Wire 2 Wire 3

c=5m=2 c=5m=2 c=6,m=15 c=5m=17 c=5m=1.8
7, =7.2673+3 7, =370.7045 T, =74174e+5 | 7, =5.2432e+4 74, =1.0864c+4
Ty, =7.9446e+5 Ty, =2.7136e+4 Ty, =42255e+7 | m,,=43882e+5 | 7, =7.8353e+4
T4, =1.9536e+6 T4, =9.0021e+3 g, =2.1979e+7 Ty, =8.5291e+3 Ty, =2.4266e+3
g5 =1.3341e+7 Ty = 1.0814e+5 | 7, =1.1003e+9 Tr4s =6.3028e+8 Tgs =1.5647e+8
T4, =2.4817e+4 74, =273.7883 T4, =2.2641e+5 T4, =3.4352e+3 4, = 1642e+3
T4, =8.1471e+4 T4, = 499.4337 T4, =8.4342e+6 T4, =5.8215¢+3 74, =1.5393e+3
T4, =3.2206e+3 74, =10.4070 74, =9.1016e+3 T4, =3.4641e+3 74, =1.0945¢+3
74 =0.0123 T4 = 8.2020e-4 T4 = 0.1308 T4 =2.8776e-6 T4 =1.9289¢-5
7, = 28.3639 7, = 0.8618 7, = 666.5307 74, =72.2085 70, =6.0446
74, = 287.8772 4, = 16.6549 74, =5.3404e+3 4, = 33.5940 7, =6.2398
74, =1.0916 74, =0.0053 T4, = 2.2590 4, = 36.2224 74, =6.2522
74, = 1.3706e-4 Ty =8.7143e-6 | 7, =0.0012 74, =1.4868¢-6 T4 =4.9392¢-6

The defuzzified output value for ¢ fuzzy rules is as:
§= 2 Wi (10)

where the design parameter W, >0 (i = 1, 2, ..., ¢) is the weight of the i-th rule that should be identified
such that to minimize the performance index (P[), which is the mean squared error between the fuzzy

7 o; which can be considered as a normalized
defuzzified output value of the i-th rule, and y{ is a non-fuzzy representative of the output fuzzy set B; of
i-th rule and is selected according to the criteria defined in [14]. To account for the influence of the
unmodelled effects (inaccuracies and uncertainties that may exist in the antecedent and consequent fuzzy

model output and the desired/actual output, y; = @,/ 25:1

sets of the rules), in equation (10) the parameterized form (weighted sum) of ! is used.

Following the structure identification, the parameters of the fuzzy model (fuzziness parameter and
weights of rules) are calculated for all five joints/wires. The weights of rules are identified in an on-line
procedure using a gradient descent technique based on the instantaneous difference of the fuzzy model
output and actual output, e, = y; — J;, by minimizing the performance index PI:

PI(W

- Z/]Ll(yk - (ZfﬂWiyj)k )2

N

(11)

Using the gradient descent technique, the weight modification term for the i-th weight is:

AW (2) =~a,

r

oPI(W) _ 201, 337 ()

ow;

N

(12)

where ¢;,, 0<a;, <1, is the learning rate, also called the step size. Therefore, at step z+1 of learning
process, the updating law for the weight of the i-th rule is obtained as:
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(2)

2aLr N (z) CUiyio

Wiz +1) = Wy(2)+ e 3N | o) | D (13)
N Zizl(wi) P

This parameterized direct fuzzy reasoning adds adaptive capability to a fuzzy model. In a real-time
application, the rule weights can be updated at the same sampling rate that the control loop runs or at the
sampling rate slower than the sampling rate of control loop (to reduce the computation burden). The rule
weights are factors by which the contribution of each rule in the rule set are multiplied with as a fuzzy
system adapts to its environment.

The fuzziness parameter m is identified by plotting the performance index PI versus m (Figure 4). It
should be noted that by proper identification of m, there is no need to adjust the membership functions of
input and output data. The results for the two joints and three wires are summarized in Table 2. The fuzzy
logic inverse dynamic models of the five actuated joints/wires of manipulator are depicted in Figure 5.
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Figure 4. Performance index variation with the fuzziness parameter m for actuated joints/wires.

The identified fuzzy-logic-based inverse dynamic model was validated by applying a different set of
trajectories. The evaluation experiment consisted of first a comparison study of the fuzzy model output
and the calculated actuator torques using the measured current and torque constant of each joint/wire
actuator, which indicated that the fuzzy model output follows the measured joint/wire torque with good
accuracy (Figure 6). In the second step, effectiveness of the identified fuzzy model was assessed through
the use of the fuzzy model as a model-based component of the proposed control methodology of [15] for
trajectory tracking task. The experimental results verified that, in the controller, the main part of the
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control input was produced by the fuzzy inverse dynamic model of the system, i.e., the controller mainly
relied on the model-based component rather than the error-based component.

Table 2. Specification of the fuzzy model of actuated joints/wires.

Joints/Wires # of Clusters c Fuzzinesg Parameter m Main Input Variables
(Figure 3) (Figure 4) (Table 2)
foint 5 ) G-, 04
Joint 2 5 2 44-95:9,-94+9s
Wire 1 6 1.5 45.G,.4,.44-95
Wire 2 5 1.7 45.G,.4,.44-95
Wire 3 5 1.8 45.G,-G,-G,-95

3 Discussion and Conclusions

In this paper a methodology for the development of fuzzy-logic based inverse dynamic model of robot
manipulators, presented in [6, 7], was implemented to build an adaptive fuzzy model of a 4 DOF wire-
actuated parallel manipulator. The optimum value of the fuzziness parameter m was identified using the
variation of the performance index with m. This is justified by using the concept of the interval of
confidence, which relates parameter m to the level of uncertainty contained in the input-output data. The
optimum number of clusters (rules) was chosen based on an additional criterion using the variation of the
fuzzy model output with respect to the number of clusters. A generalized and parameterized reasoning
mechanism, constructed based on the weighted sum of the normalized defuzzified output value of each
individual rule, was applied. To relax the persistent excitation condition (condition on the input signal that
guarantees uniform asymptotic convergence of the identification algorithms) in the off-line identification
procedure and to account for the effects of the time-varying parameters, a gradient-descent based
parameter adjustment was implemented to tune the parameters of reasoning mechanism instead of the
existing heuristic parameter identification. The identified fuzzy model (calculated actuated torques) of
manipulator was verified by the corresponding measured quantities.
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Figure 5. Fuzzy logic inverse dynamic model of the wire-actuated parallel manipulator.
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Figure 6: Comparison of the actuated joint/wire torque computed by fuzzy model (doted line) with the measured
joint/wire torque (solid line) for the sinusoidal and periodic trajectories.
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