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 ABSTRACT   
 

In this paper, a multi-objective trajectory planning system is developed for redundant manipulators. 
This system involves kinematic redundancy resolution, as well as robot dynamics, including actuators 
model. The kinematic redundancy is taken into account through a secondary criterion of joint limits 
avoidance. The optimization procedure is performed subject to limitations on actuator torques and 
workspace, while passing through imposed poses. The Augmented Lagrangian with decoupling (ALD) 
technique is used to solve the resulting constrained non convex and nonlinear optimal control problem. 
Furthermore, the final state constraint is solved using a gradient projection. Simulations on a three degrees 
of freedom planar redundant serial manipulator show the effectiveness of the proposed system.  
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PLANIFICATION MULTI-OBJECTIVE DE TRAJECTOIRE DES 
MANIPULATEURS REDONDANTS PAR LAGRANGIEN AUGMENTÉ  

 
 

RÉSUMÉ 
 

Dans cet article, nous considérons le problème de planification multi-objective de trajectoire des 
manipulateurs sériels redondants. À partir des modèles cinématique et dynamique du robot, et ceux de 
l’espace de travail et de la tâche, le problème est formulé dans le cadre du calcul variationnel, comme un 
programme non linéaire sous contraintes. La redondance cinématique est résolue en appliquant une 
version modifiée de l’algorithme de la Jacobienne augmentée. La technique du Lagrangien augmenté est 
ensuite appliquée à une représentation découplée de la dynamique du robot afin de résoudre le problème 
résultant de commande optimale. Des études de simulations montrent l’efficacité de cette approche 
comparée à celles développées jusqu’à date, notamment les approches utilisant les méthodes de pénalité 
ou celles basées uniquement sur la cinématique du robot.  
 
Mots Clés : Manipulateurs Redondants, Planification de trajectoire, Lagrangien augmenté, Découplage,  
Projection  

 

 



1.   INTRODUCTION 
 

A great advantage of robots is their ability and flexibility to rearrange themselves for new tasks. 
Utilization of robot's flexibility presupposes effective motion planning. This is aimed at generating 
trajectories for a specific task, according to a set of desired performance criteria [1, 2]. The task is usually 
specified in terms of a motion of the end-effector (EE), which results in a geometric path to be followed 
with a given time law. Moreover, the robot arm is actuated at the joints, thus requiring control actions to 
be performed by the joint servos. A feasible planning could be satisfactory if the required target 
performance is not too tight. Otherwise, one must use an optimal (or near optimal) approach, and then test 
how it is robust to changes of the dynamic parameters [3, 4]. One of the motion control algorithm 
problems is that the desired trajectory may cause saturation of the speed and/or torques delivered by the 
joint actuators in the vicinity of singularities. This might occur in many regions of the workspace, due to 
nonlinear kinematic transformations between task and joint spaces. Furthermore, when the assigned 
trajectory results are unfeasible due to actuation limits or passing through singular poses, the motion 
planning system must still generates torques that allow achieving the performance criteria, while avoiding 
singularities and satisfying other task-related constraints. Several studies had considered this problem [6-
9]. Some of them dealt with kinematic redundancy resolution, while others included robot dynamics and 
force optimization [3-5].  

In this paper, the multi-objective trajectory planning problem is formulated based on kinematic and 
dynamic, including actuators models. The cost functional involves time optimization through sampling 
period variations and electric energy as well as a measure of manipulability. The resulting constrained non 
convex and nonlinear optimal control problem is solved using AL technique on a decoupled form of the 
robot dynamics. The advantage of using such a technique – as compared to other optimization methods 
like penalty methods – is its ability to deal with non convexities (due mainly to the strong non linear 
character of the system’s constraints) and ill conditioning that may occur during the iterative resolution 
process. Furthermore, in many applications, such as pick and place or assembly tasks, the final state 
attainability constraint is a primary issue. This constraint is achieved through a gradient projection 
algorithm [10-11]. After problem modelling and formulation, simulation results on a three degrees of 
freedom planar redundant serial manipulator show very encouraging results as compared to other 
approaches, namely, minimum-time control and kinematic-based methods. In section 2, the kinematic and 
dynamic models are considered as well as other associated constraints. In section 3, the augmented 
Lagrangian with decoupling and projection gradient technique is developed. Section 4 provides simulation 
results, and section 5 concludes this paper.  

 
2.   MODELING 

 
2. 1.  Kinematic modeling 

                                                            
   

 
The forward kinematics problem deals with the determination of the EE motion from a given motion 

of the joints [12]. At the velocity level, it is expressed in a vector form as:   

        q&& Jx   =           (1) 
 

where  is the n-dimensional joint angles vector,  
is the m-dimensional position vector of the EE and J is the mxn robot’s Jacobian [12]. Although this study 
is applicable to a general n-degrees-of-freedom (DOF) serial manipulator with m-DOF at the Cartesian EE 
level, it is implemented on a two dimensional positioning robot.   
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The inverse kinematics problem is the determination of the joints motion from a given EE motion. 
Because  is not a square matrix, a kinematic redundancy holds for this inverse kinematics problem. A 
first approach to utilize redundancy to solve the inverse kinematics was proposed by Liégeois [7]. In his 
approach, a gradient projection is used to devise a general solution expressed as: 

J
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where is a generalized inverse of  . The pseudo-inverse solution in the first term of eq. (2) is known 
to minimize the two-norm of the joint velocity vector, whereas the second term is called the homogeneous 
or null-space solution. The later does not contribute to the EE motion yet determines the minimum-norm 
solution. However, it has been shown that rather than driving the robot away from singularities at very 
high demands in joint velocities, this solution sometimes leads the robot to singularities [8]. A weighted 
pseudo-inverse by the inertia matrix is used here. This allows dynamic consistency compared to 
traditional pseudo-inverse. It is given by:  

⊥J J
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In order to include a secondary task criterion within a performance index , is chosen to be )(qr z
 

                )(  qrb∇±=z                                           (4) 
where b  is a positive real number and  )(qr∇  the gradient of . A positive sign in eq. (4) indicates that 
the criterion is to be maximized. A negative sign indicates minimization. Including joint limits avoidance 

constraint through redundancy resolution might be performed by choosing  
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yields                                                            ,                                                               (6) )(
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where  is a positive weighting matrix to scale the magnitude of the manipulator response to joint 
displacement. A typical choice for this matrix is 

W
)( diag minmax qq −=W  

 
2. 2.  Dynamic modelling 

 
The robot dynamic model is developed using a Lagrangian formalism, which includes actuators 

model. This model allows closed-form expression of joint rates and accelerations characterizing the 
motion resulting from joint torques. It can be expressed in continuous-time as:    

 
                                 τGVD    )(  )  ,(  )( =++ qqqqqq &&&&                                                     (7)   
    

where is the joint torques vector produced by the joint actuators, , ,  are vectors describing 
joint positions, rates and accelerations, is the 

τ 1  ×n q q& q&&
)(qD nn× manipulator inertia matrix, is the ) ,( qq &V nn×  

matrix representing Coriolis and centrifugal wrenches, and  is the)(qG 1  ×n  vector representing gravity 
forces [12].  Now, following references [2, 3], the discrete-time dynamic model can be approximated as:             
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where is the 2n-dimensional robot state and T
kk

T
kkk ) () ( 21

.
x,xq,qx == I  is the nxn identity matrix. Equation 

(8) is written for simplicity as:  
                         ) ,,(    1 kkkdkk hτxfx =+         (9)  
 

2. 3.  Constraints modeling 
 

In addition to eqs. (2)-(9), the following constraints are considered: 
 Boundary conditions: These concern the starting and final states    Ts xx  and 

                                                      Sxx =0 , TN xx   =                   (10)   
 

 Redundancy resolution ensuring joint limits avoidance: This is achieved using eqs. (2) and (3) 

                                     
(11) 
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where , and refer, respectively, to discrete values of joint angles      k1

−

x 1maxx 1minx minmax   and   , qqq
−

                                                    
 Admissible domain of the sampling periods  

                                                                             max  min    hhh k ≤≤  , 1,...,0  −= Nk                           (13) 
 Admissible domain of the actuator torques  

       max  min    τττ ≤≤ k  , 1,...,0  −= Nk                                         (14) 

 Imposed passage through intermediate EE poses: This consists of a set of two-dimensional point 
positions defined as:   

                               0 T  - PassTh =− pllpp , Ll ,...,1  =                                           (15) 
where p is the current position vector of the EE, is the llp th passage point and L  is the number of imposed 

points and is the passage tolerance. For the sake of simplicity, all equality and inequality 
constraints are written as   and 

plPassThT
0  )( =xs i I1,...,i = 0  ) ( ≤τg x,j J1 ,...,j = , regardless if they depend only on 

state, control inputs or both, where I and J denote the numbers of equality and inequality constraints.  
 

3.  NON LINEAR PROGRAMMING FORMULATION 
 

Several criteria had been proposed, such as traveling time, consumed energy, obstacle avoidance and 
manipulability measure [2-6]. The most popular is traveling time for the obvious reason of production 
targets. However, the major drawback of this control criterion is its bang-bang character, producing non 
smooth trajectories exceeding joint speed and/or acceleration limits achievable by the actuators [4]. To 
deal with this problem, some authors introduced a virtual time augmenting the actual time in an effort to 
track the desired trajectory. In this paper, a multi-objective planning strategy is implemented.  

 



The discrete-time constrained optimal control problem consists of finding the optimal 
sequences and  allowing the robot to move from an initial state  to a     
target state , while minimizing the multi-objective performance index  including energy, 
traveling time, and a singularity avoidance function. It is expressed as: 
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where C ,U , Η , ι  and are, respectively, the set of admissible torques, the set of admissible sampling 
periods,  electric energy matrix weight, a positive scalar time weight and a weight factor for singularity 

avoidance. is the EE traveling time between two successive discrete poses  and , 
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This optimization problem is performed subject to constraints (9)-(15). 
 

3. 1.  Augmented Lagrangian (AL) 
 

The problem (20) is a multi-objective non-linear and non-convex optimal control problem. It is solved 
using an Augmented Lagrangian technique, which transforms the constrained problem into a non-
constrained one. The degree of penalty for violating the constraints is regulated by penalty parameters. 
This method basically relies on quadratic penalty methods, but reduces the possibility of ill conditioning 
of the sub-problems that are generated with penalization by introducing explicit Lagrange multipliers 
estimates at each step into the function to be minimized [10, 11]. The AL function is written as: 
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In eq. (18), the function is defined by the discrete state eq. (9) at the sampling point k, is the 

total sampling number designates the co-states obtained from the adjunct equations, and are 
Lagrange multipliers with appropriate dimensions, associated to equality and inequality constraints and 

and are the corresponding penalty coefficients. The adopted penalty functions combine penalty and 
dual methods allowing relaxation of inequality constraints as soon as they are satisfied. These are given 
by:      
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   where  and  refer to Lagrange multipliers and left hand side of equality and inequality constraints. 
The Karush-Kuhn-Tucker first order optimality conditions [11] state that for a trajectory 

 to be optimal solution to the problem, there must exists some positive 
Lagrange multipliers , unrestricted sign multipliers  and positive penalty coefficients and 
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The development of the above conditions enables one to derive the iterative formulas to solve the 
optimal control problem by updating control variables, Lagrange multipliers and penalty coefficients. 
However, in eq. (9),  contains the inverse of the inertia matrix  and Coriolis and 

centrifugal wrenches . These might be very cumbersome to express. In developing the first order 
optimality conditions and computing the co-states , an inverse of the mentioned inertia matrix and its 
derivatives with respect to state variables must be computed, resulting in huge calculations. 
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3. 2.  Augmented Lagrangian with decoupling (ALD) 
 
The computational difficulty mentioned beforehand is solved using a linear-decoupled formulation [13].  
Theorem:    Under the invertibility condition of the inertia matrix, the control law defined as 
 

                                 )(  ) ,(  )( 12211 xxxxvxu GVD ++=                                                   (21) 
 

allows the robot to have a linear and decoupled behavior with a dynamic equation:   

                                                                                                                                                        (22) vx   2 =&

where v is an auxiliary input.     
This can be demonstrated by substituting the proposed control law given by eq. (21) into the dynamic 
model eq. (7). One gets   since is invertible, it follows that   , )(  )( 121 vxxx DD =& )( 1xD vx   2 =&

This gives the robot a decoupled linear behavior approximated by the following discrete linear equation: 
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Notice that while this dramatically eases the calculation of the co-states. The non-linearity is 

transferred to the objective function. The decoupled problem consists then of finding the optimal 
sequences of sampling periods and accelerations , ) , allowing the robot to 
move from an initial state  to a final state , while minimizing the cost function , expressed 
as:   
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Subject to the decoupled dynamic state eq. (22), and the above-mentioned constraints.  
The augmented Lagrangian function (ALD) associated to the decoupled problem (25) is   
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with the function being defined by the state of eq (23), and other parameters appearing in eq. 

(26) are defined above. Again, the development of the first order optimality conditions allows deriving 
iterative formulas for control and state variables, Lagrange multipliers as well as penalty coefficients. 

These expressions are quite long and are not detailed here. The final state constraint is not 
included within the penalty procedure, as we have to satisfy it at each iteration. A re-adjustment is 
performed with an orthogonal projection on the tangent space of this constraint, through the application 
of the descent direction   
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where is an identity matrix with appropriate dimension and  is the projection matrix on the tangent 
space of the final state constraint. The re-adjustment process allows satisfying target attainability with 
any given 

dI νQ

ε - precision [11]. If other imposed states are to be satisfied at each iteration, then the re-
adjustment procedure must be extended to these constraints. Figure 1 depicts a flowchart diagram of 
ALD function and architecture for the multi-objective trajectory planning problem. In this procedure, 
one has to select robot parameters, task definition, (such as starting, intermediate and target positions), 
workspace limitations and simulation parameters (block 1). Then a kinematic unit (block 2) defines a 
feasible initial solution satisfying boundary constraints in joint angles, velocities, accelerations and 
jerks. This solution is defined through a cycloidal profile. This profile has been chosen as it allows a 
near-minimum time smooth continuous trajectory as compared to a trapezoidal profile [14]. Then an 
inner optimization loop (block 3) solves for the AL minimization with respect to sampling periods and 
acceleration control variables. One first computes the gradients of the Lagrangian, the co-states 
backwardly and the projection matrix and operator. Then a steepest descent is calculated and tested 
against a suitable tolerance (block 4). If non-satisfied, one computes new search directions and updates 
sampling time and acceleration inputs. Then go back to inner optimization loop to update gradients and 
direction descent. When satisfied, one goes further to test other equality and inequality constraints 
against feasibility tolerances (block 5). If non feasible, go back to the inner optimization unit. Else, if 
feasible, do a convergence test (block 6) for cost minimization and constraints satisfaction against 
optimal tolerances. If convergence holds, display optimal trajectory and end the program. Otherwise, go 
further to the dual part of AL (block7) to test for constraints satisfaction and update penalty and 
tolerance parameters. If the constraints are not violated with respect to first order optimal tolerances then 
the multipliers are updated without decreasing penalty. If they are violated, decrease penalty while 
keeping unchanged Lagrange multipliers, to ensure that the next sub-problem will place more emphasis 
on reducing the constraints violations. In both cases the tolerances are decreased to force the subsequent 
primal iterates to be increasingly accurate solutions for the primal problem.  

 



4.   SIMULATION RESULTS 
 

A three revolute (n=3-DOF) serial manipulator moving on the vertical plan with a 2-DOF task is 
considered (Fig. 2). The robot kinematic and dynamic parameters are given in Tables 1 and 2. The 
simulation objectives are to: 1) minimize travelling time and instantaneous energy during the motion; 2) 
resolve the redundancy and avoid singularities; 3) satisfy several constraints related to limits of joint 
angles, rates, accelerations and torques. The first example is to move the tip of the manipulator along a 
straight line from the starting position (1.95, 0.82) (m), corresponding to joint angles (0o, 30o, 30o), to the 
final position (1.35, 1.3) (m), without considering the orientation. Hence, this task is performed with a 
serial 3-DOF planar manipulator that is redundant with respect to the given task. The joint velocities are 
zero at the starting and ending positions and the EE travels through a distance of 0.75 m. The multi-
objective trajectory is performed by taking each weight equals to unity in the performance index. The 
initial pose values are chosen to satisfy a secondary goal which consists of avoiding joint limits. Figure 3 
shows the (x, y) position variations for the cycloidal minimum-time trajectory and those generated based 
on ALD approach including robot dynamics, kinematics and constraints. Although the cycloidal 
minimum-time trajectory is a straight line, it is slightly disturbed in the case of its ALD counterpart. The 
bias between the two paths is due to the non-linearity of the dynamic model, considering for example the 
gravity effects. Figure 4 displays the corresponding joint angle variations. Figure 5 shows the associated 
instantaneous variations of the consumed electrical and kinetic energy and sampling periods. One notices 
the significant and monotonous diminishing of the consumed  energy with the ALD as compared to the 
cycloidal one. As for traveling time, after 4 outer and 4 inner ALD iterations, one notices a dramatic 
reduction compared to the initial cycloidal trajectory, with sec 2Cycloidal =t  and sec 237.1objective-Multi =t , an 
increase of 45% for the initial solution. On the other hand, although one gets a feasible path with the 
cycloidal profile, the associated torques and necessary energy, computed from the robot inverse dynamics 
are fairly high and exceed the nominal values. The same trajectory has been performed with three imposed 
passage points for the robot EE. Figure 6 shows the (x, y) coordinate variations while satisfying passage 
through imposed points (1.7, 0.9), (1.5, 1.0), (1.4, 1.2) (m), (in this Figure, the cycloidal trajectory does 
not consider this constraint). Figure 7 shows consumed energy and traveling time for the trajectory with 
passages. The second trajectory is a second straight line, starting from the joint position (00, 150, 200) 
corresponding to the Cartesian coordinates (0.2, 0.9) (m) to the ending position (0.64, 0.45) (m). The 
consumed energy and sampling period variations are shown in Fig. 8. The third trajectory is a circle with a 
center (-0.045, 0.75) (m) and radius 0.14 (m). The joint angle variations are shown in Fig 9, and the 
consumed energy and traveling time are shown in Fig. 10. In order to assess the sensitivity of the proposed 
multi-objective trajectory planning to dynamic parameter changes, the mass of the third link was increased 
by 1.5 Kg. Figs. 11 (a) and (b) show respectively, the variations of sampling time and consumed energy 
for the original and modified third link mass trajectories. Although the necessary energy and traveling 
time to perform the modified link mass task grow greater, the achieved performance is good, as it reaches 
the position with a precision of order 10-3 (m). This highlights the ALD good robustness to parameters 
changes as illustrated in Fig 12.  

On the whole, the computation time is quite long. It took about 9 minutes on a Pentium III, 996 MHz, to 
simulate and get the performances of the first straight line trajectory. This is due mainly to the high 
nonlinear robot dynamics and projection matrix and operator calculations to satisfy the final state constraint 
at each iteration.   

Table 1. Kinematic and dynamic parameters of the manipulator      
Link I     Mass (kg)      Inertia I i(kg m2)         Length L i(m) 
    1             8                       9.23                             1.0 
    2             4                       7.5                               0.8 
    3             2                       5.21                             0.45 

 



             Table 2. Limits of workspace, actuator torques, joint rates and accelerations and sampling periods  

Parameter           x (m)      y (m)        (Nm)    (Nm)    (Nm)          (rad/s)     (rad/s1τ 2τ 3τ Motoriq& Motor

..

iq 2)       h (sec) 
    Max                   2.5        2.5                40            25             20                        2                        3                           0.1 
    Min                   0.4       0.20              -40           -25            -20                      -2                      -3                          0.001 
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k

t
k ρρ =+ ,    1 t

k
t
k σσ =+  

Put 11    ++ = tta μυ  , ηηη a
tst a 11  ++ =  ηηη a

tst a 1111  ++ = , wa
tst aww 11  ++ =  

Aggregated Updates 
Put  ) ,(max  111 ++ = tt ca μ ,  If tt aa   1 <+ Then wa

ttt aww 11   ++ =  , ηηη a
ttt a 11  ++ =  ,   Else ωb

ttt aww 11  ++ = , ηηη b
ttt a 11   ++ =     

Put 
1    += tt  

Termination 
 If *  Tt <  
 

Maximum number of iterations ∗ T  reached without convergence, 

Stop the program 

Optimality Test 
 4/* t

D
dv wE <∇ , 4/* t

D
dh wE <∇  ,    *)( tg η<x *

1   )( ts η<x
 
   

6 

Feasibility Test 
 4/ t

D
dv wE <∇ , 4/ t

D
dh wE <∇  ,    )( tg η<x ts 1   )( η<x

 
   

5

Test For 
Steepest descent 

ε<kd  

4

Inner Optimization Loop 

Co-states backward computation  kλ , Compute Gradients  D
v Lμ∇ ,  DLμh∇  

Compute Projection matrix & operator Q, P and direction descent: kd

3

Data Reading 
Set initial and final values of state positions, Lagrange multipliers, limits on state components, 
torques, and sampling periods N , and number of iterations *T , set feasible and optimal tolerances 

1
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  Fig. 1 Function and architecture of the ALD system for the multi-objective trajectory-planning problem 

 



                     Fig. 2. Geometry of a 3-DOF planar manipulator of joint angles 
  

321  , ,,jq j =   

         
         Fig. 3. EE trajectory along axis x and y displacement in meters versus sampling points,        

        (___) Cycloidal profile, (*-*-*-*) Minimum-time including robot dynamics and constraints         

   
   Fig.  4. Joint variations                iq

                                                       
                                                            Fig. 5. Corresponding energy and sampling period h variations       
 

                                     
                      Figure 6 (x, y) coordinate variations while satisfying the  

                        passage through imposed points (1.7, 0.9), (1.5, 1.0), (1.4, 1.2) (m)   
 

 



               
                 Figure 7 Associated consumed energy and traveling time to the trajectory with imposed passages 

  

                                                       
                                 Fig. 8. Energy and sampling period h instantaneous variations for the second trajectory   

                                        
                             Fig.9. Instantaneous variations of                Fig. 10. Instantaneous variations of consumed energy           
                           joint angles  for the circle trajectory                and sampling time for the circle trajectory                    321  , ,,jq j =

 

                                   
                                                       (a)                           (b) 
                           Fig.11. Instantaneous variations of consumed energy and sampling time for the first example 

(a) Trajectory with third link mass 2 Kg  (b) Trajectory with increased third link mass by 1.5 Kg   
 

                                     
                    Fig.12. EE trajectory along axis x and y displacement for example 1 with modified third link mass    
 

 



5.  CONCLUSION  
 

In this paper, a method for computing a multi-objective trajectory planning is developed. This method 
includes joint angles, rates, accelerations, jerks, workspace, and actuator torques limitations. It is solved 
through an Augmented Lagrangian on a decoupled form of the robot dynamics. According to preliminary 
simulation results, this approach is effective and robust in solving the non-convex and non-linear 
constrained motion planning problem. The trajectories are smooth and singularity free, a capability which 
makes them very suitable for use as reference inputs to a feedback like PID position controller or as 
training datasets on which to build an objective data-driven neuro-fuzzy system for on-line planning and 
control. An ongoing work is on reducing the computational time by accelerating the convergence rate of 
the algorithm. Another short trend is to use the outcomes of such a multi-objective trajectory planning to 
build a data-driven neuro-fuzzy control system for on-line planning with reasonable computational time.   
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