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Abstract
In this work, the 3-RPRR, a new kinematically redundant planar parallel manipulator with six

degrees of freedom, is presented. First the manipulator is introduced and its inverse displacement
problem discussed. Then, all types of the singularities of the 3-RPRR manipulator are analysed
and demonstrated. Thereafter, the reachable and dexterousworkspaces are obtained and compared
with those of the non-redundant 3-PRR manipulator. Finally, based on a geometrical measure
of proximity to singular configurations, actuation schemesfor the manipulators are obtained. It is
shown that the proposed manipulator is capable of followinga path while avoiding the singularities.

Keywords: kinematic redundancy, planar parallel manipulators, inverse displacement, singu-
larity analysis, workspace analysis, path planning

MANIPULATEUR PARALL ÈLE PLAN REDONDANT DE TYPE 3-RPRR

Résuḿe

Cet article propose un nouveau manipulateur parallèle plan redondant ayant une architecture de
type 3-RPRR qui comporte six degrés de liberté. L’architecture du manipulateur est présentée et le
problème géométrique inverse est résolu. Tous les types de singularités du manipulateur 3-RPRR
sont analysés et démontrés. Les espaces de travail atteignable et dextre sont ensuite obtenus pour
le 3-RPRR et comparés avec ceux du manipulateur non redondant de type 3-PRR. Finalement,
une stratégie d’actionnement est développée basée surune mesure géométrique qui indique la
proximité d’une configuration singulière. Il est démontré que le manipulateur proposé peut éviter
les configurations singulières lorsqu’il suit une trajectoire.

Mots clés: redondance cinématique, manipulateur parallèle plan, analyse de singularités, problème
géométrique inverse, espace de travail, planification detrajectoire
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1 INTRODUCTION

Parallel manipulators have been broadly studied. Certain characteristics, when compared to serial
manipulators, such as high payload-to-weight ratio, high rigidity, high accuracy and high-speed
motion have made them useful mechanisms for certain applications. On the other hand, they suffer
from relatively small workspaces, complex kinematics, lowmaneuverability and a high number of
singular configurations. Many research have been conductedon improving the capabilities of par-
allel manipulators [1]. The majority of studies on parallelmanipulators have concentrated on non-
redundant manipulators. Redundancy in parallel manipulators, unlike serial manipulators [2; 3],
has only been introduced in [4] and [5]. Redundancy can be divided into actuation redundancy and
kinematic redundancy.Actuation redundancycan be explained as replacing existing passive joints
of a manipulator by active ones. Consequently, actuation redundancy does not change the mobility
or workspace of a manipulator but may cause singularity reduction [6]. Kinematic redundancy, on
the other hand, adds to the mobility and degrees of freedom (DOF) of parallel manipulators. Kine-
matic redundancy occurs when extra active joints and links (if needed) are added to manipulators.
As a result, kinematically redundant manipulators need more controlling variables than needed for
a set of specified tasks [6].

In the present work, the 3-RPRR4, a new 6-DOF kinematically planar parallel manipulator is
introduced first and its inverse displacement problem (IDP)is explained and illustrated. Then,
Jacobian matrices of the manipulator are derived and all types of its kinematic singularities are
obtained and their geometrical interpretations illustrated. Thereafter, the reachable and dexterous
workspaces of the 3-RPRR manipulator are compared to those of its original non-redundant 3-PRR
manipulator. Next, a geometrical method is proposed to measure the closeness of both the 3-RPRR
and the 3-PRR manipulators to singular configurations. Using this measure as a cost function, a
local optimisation method is used to illustrate how to determine the optimal actuation scheme.

2 PROPOSED ARCHITECTURES

The proposed kinematically redundant parallel manipulator originates from the non-redundant 3-
PRR planar parallel manipulators proposed in [7]. Considering Figure 1, if each limb of the il-
lustrated manipulator has anglesθi fixed, the resulting manipulator would be a 3-PRR. That is,
the 3-PRR would have a prismatic actuator at pointAi, followed by two passive revolute joints
at pointsDi andBi. The addition of the active revolute joint atAi turns the manipulator into the
depicted 3-RPRR redundant planar manipulator. Note that throughout the present work, the solid
circles in the figures represent active revolute joints whereas empty ones represent passive joints.
Also note that throughout this work,i = 1, 2, 3. As for the 3-PRRR manipulator studied in [9],
adding one degree of kinematic redundancy (1-DOKR) to each limb not only reduces the singular-
ities but also improves the workspace of the manipulator. Having the actuators at the base of the
manipulator has the advantage of lessening the dynamic effects.

4The terminology used is the following. A 3-RPRR mechanism indicates that the end-effector is connected to
the base by three serial kinematic chains (limbs), each consisting of two active (and therefore underlined) joints, one
revolute joint (R) and one prismatic joint (P), respectively, connected to the base, followed by two passive revolute
joints, the second of which connects the limb to the end-effector.
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Figure 1: 3-RPRR planar 6-DOF kinemat-
ically redundant parallel manipulator (ifθis
were fixed, the manipulator would be 3-PRR).
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Figure 2: 4-DOF kinematically redundant pla-
nar parallel manipulator and its locus of solu-
tions for the inverse displacement problem.

3 INVERSE DISPLACEMENT OF REDUNDANT PARALLEL M ANIPULATORS

Kinematic redundancy in parallel manipulators results in increasing the number of solutions for
the IDP. More particularly, for a given pose of the end-effector inside the workspace, there are
an infinite number of solutions. The IDP in kinematically redundant parallel manipulators results
in a locus of solutions for each limb as opposed to a finite number of solutions in non-redundant
parallel manipulators. Figure 2 shows a planar parallel manipulator which has 1-DOKR in its first
limb. Considering limbAiDi, pointD1 can be anywhere on the hatched circle centred at point
A1. The radius of the circle is equal to the maximum displacement of the prismatic actuator. For
a given position and orientation of the end-effector, linkB1D1 can fully rotate around pointB1.
Therefore, the locus of IDP solutions is the arĉRD1S.

Based on quantities shown in Figure 1, the inverse displacement solution of the 3-RPRR can be
written as:

DiBi = OP + AiO +DiAi + PBi (1)

li
2 = (xp − xAi

− ρicθi
+ ric(φ+ψi))

2 + (yp − yAi
− ρisθi

+ ris(φ+ψi))
2 (2)

li
2 = xli

2 + yli
2 = (licαi

)2 + (lisαi
)2 (3)

wherec∡ ands∡ representcos(∡) andsin(∡), respectively.

4 SINGULARITY ANALYSIS

Jacobian matrices transform the velocity vector of the active joints in the velocity vector of the
end-effector and vice-versa:

Jxẋ = Jqq̇ (4)

whereq̇ is the velocity vector of the associated active joints andẋ is the velocity vector of the
end-effector. Considering equation (4), three types of singularities can be defined for parallel
manipulators [8]:
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1. Direct kinematic singularities whenJx is singular.

2. Inverse kinematic singularities whenJq is singular.

3. Combined (complex) singularities whenJx andJq are singular.

Direct singularities take place when the determinant ofJx is zero (|Jx| = 0), which means there
are some nonzero velocities of the end-effector that cause zero velocities for the actuators. Con-
versely, inverse singularities (|Jq| = 0) happen when there exist some nonzero actuator velocities
that cause zero velocities for the end-effector.

4.1 Jacobian matrices of the 3-PRR and 3-RPRR manipulators

By selectingxr = [xp, yp, φ]T andqr = [ρ1, θ1, ρ2, θ2, ρ3, θ3]
T as the displacement vectors for

the end-effector and the actuators of the redundant manipulator, respectively, and differentiating
equation (2) with respect to time, the Jacobian matrices in equation (4) become:

Jxr
=





a11 a12 a13

a21 a22 a23

a31 a31 a33





3×3

Jqr
=





u1 v1 0 0 0 0
0 0 u2 v2 0 0
0 0 0 0 u3 v3





3×6

(5)

where

ai1 = xp − xAi
− ρicθ1 + ric(φ+ψi) ui = cθi

ai1 + sθi
ai2

ai2 = yp − yAi
− ρisθ1 + ris(φ+ψi) vi = −ρisθi

ai1 + ρicθi
ai2

ai3 = −ris(φ+ψi)ai1 + ric(φ+ψi)ai2

The displacement vectors of the end-effector and actuatorsof the 3-PRR arex = [xp, yp, φ]T

andq = [ρ1, ρ2, ρ3]
T , respectively.

It should be noted that consideringθi are fixed,Jx for the 3-PRR is the same asJxr
, butJq is:

Jq =





u1 0 0
0 u2 0
0 0 u3





3×3

(6)

4.2 Direct kinematic singularities of the 3-PRR and 3-RPRR manipulators

The direct kinematic singularities of planar parallel manipulators with architectures whose distal
links have passive revolute joints at both ends such as the 3-PRR and 3-RPRR manipulators are the
same. They all occur when the lines collinear with the distallinks meet at a common point. The
reason for this is that forces can only be transmitted in the distal link directions. Therefore, when
all of them meet at a common point, while all the actuators arelocked, the end-effector cannot
sustain a moment applied to the end-effector.

The 3-PRR manipulator has only up to two solutions of the IDP for a given pose. On the other
hand, as explained earlier for the 3-RPRR manipulator, it is possible to select any of the solutions
for the inverse displacement of a kinematically redundant limb that are not in direct singularities

4



and avoid a considerable number of direct singularities. Therefore, adding 1-DOKR to the 3-
PRR manipulator can reduce considerably the number of directsingularities of the 3-RPRR planar
manipulator but not all of them [6]. By adding 2-DOKR it is possible to avoid all direct singularities
for most manipulators [9]. Since there are two loci of solutions for two of the limbs it is possible to
pick at least one that is not singular. Adding 1-DOKR to each limb of the 3-PRR not only makes
the created kinematically redundant manipulator symmetrical but also improves its workspace and
maneuverability. Therefore, the 3-RPRR manipulator has 6-DOF.

Based on equations (2) and (3), the direct Jacobian matrix ofthe 3-RPRR manipulator can be
shown as:

Jxr
=





l1cα1
l1sα1

l1r1s(α1−φ−ψ1)

l2cα2
l2sα2

l2r2s(α2−φ−ψ2)

l3cα3
l3sα3

l3r3s(α3−φ−ψ3)





3×3

(7)

The determinant ofJxr
is zero when there are linear dependencies between any two ormore

rows or columns. That is,
λ1Γ1 + λ2Γ2 + λ3Γ3 = 0 (8)

whereλi are the coefficients of linear dependency which more than twoλis cannot be zero si-
multaneously. VectorΓi represents theith row or column ofJxr

. Having only oneλi nonzero,
associates with cases that one row or column is zero. Considering equation (7), the elements of
the first or second columns are zeros, whencαi

= 0 or sαi
= 0, respectively. These two conditions

happen when all the distal links of the 3-RPRR manipulator become parallel and are also parallel
to theY or X axes, respectively. In both cases, the distal links are saidto meet at a common point
at infinity. Note that singularities do not depend on the chosen coordinate system. Thus, the sin-
gularity conditions described above can be expanded to the distal links being parallel regardless of
their alignment with any of the axes. For the 3-RPRR manipulator, singular configurations only
depend on relative positions and orientations of the distallinks.

The third column becomes zero when all three distal links meet at pointP . Again, since sin-
gularities are not frame dependent,the direct singularities can take place when all the distal links
meet at a common point, shown in Figure 3a.

Linear dependency between the rows have the same meaning as between the columns. Linear
dependency between any two rows happens when two distal links are aligned with the side of the
end-effector that is between them. Figure 3b illustrates such a configuration for the first and second
limb. Since for this configurationα1 = α2 − π = φ the direct JacobianJxr

in equation (7) can be
written as:

Jxr
=





l1cα1
l1sα1

−l1r1sψ1

−l2cα1
−l2sα1

l2r2sψ2

l3cα3
l3sα3

l3r3s(α3−φ−ψ3)





3×3

(9)

Considering Figure 3b, it is evident thatr1sψ1
= r2sψ2

, therefore, the first and second rows are
linearly dependent. The same can be shown for any other two limbs of the 3-RPRR. This linear
dependency like the one for the columns is independent from the fixed and moving coordinate
systems. The same discussion can be given for the 3-PRR non-redundant manipulator.
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Figure 3: Examples of direct singularities for the 3-RPRR manipulator with linear dependency
between columns/rows.

4.3 Inverse kinematic singularities of the 3-PRR and 3-RPRR manipulators

For redundant parallel manipulators, inverse singularities occur when the determinant ofJqr
JTqr

is
zero [1]. It implies that inverse singularities take place when all the non-redundant manipulators,
extracted by freezing three of the active joints from the 3-RPRR are in singularity.

Jqr
JTqr

=





u2
1 + v2

1 0 0
0 u2

2 + v2
2 0

0 0 u2
3 + v2

3





3×3

ui = lic(αi−θi) vi = liρis(αi−θi) (10)

|JqJ
T
q | is zero when any diagonal elements or all of them are zeros. For each limb to be in

inverse singularities, both of the following conditions must be satisfied:

ρi = 0 AND αi = (2n+1
2

)π + θi n = 0, 1, 2, ...

These conditions mean that inverse singularities take place when lengthAiDi is zero (i.e., ρi =
0) andDiBi is perpendicular to the direction of the prismatic actuator. Therefore, by avoiding the
ρis to approach zero values whileαi relative toθi approaches a right angle, it is possible to avoid
inverse singularities for the redundant 3-RPRR manipulator. Figure 4a illustrates a configuration
when the third limb of the 3-RPRR manipulator is in an inverse kinematic singularity.

According to Equation (6), inverse singularities take place for the non-redundant 3-PRR manip-
ulator, when any or all of the termsui are zeros. Hence, the 3-PRR is in inverse singularities when
DiBi is perpendicular toAiDi. Figure 4b illustrates a configuration when the first limb is in an
inverse singularity.

4.4 Combined (complex) singularities of the 3-PRR and 3-RPRR manipulators

The combined singularities occur when both direct and inverse kinematic singularities take place.
In other words, when bothJxr

andJqr
JTqr

(for the non-redundant manipulatorJx andJq) are
singular. Figures 4c and 4d show configurations in which bothdirect and inverse singularities
occur at the same time for both manipulators. For the 3-RPRR manipulator this means the lines
passing through all threeDiBi links meet at a common point and one or more branches (branch
three in Figure 4c) satisfy the condition described above whereDiBi is perpendicular toAiDi

while ρi = 0. The same conditions are necessary for the 3-PRR manipulator to be at a combined
singularity except for the fact thatρi does not need to be zero (see Figure 4d).
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Table 1: Workspace comparison for the 3-PRR and 3-RPRR. All absolute quantities are inm2.
Reachable Dexterous Ratio

Abs. Rel. Abs. Rel. Dexterous
Reachable

3-PRR 0.381 1 0.199 1 0.522
3-RPRR 1.555 4.080 1.078 5.417 0.693

5 WORKSPACE ANALYSIS

Workspace analysis in the present work is based upon two types of workspaces: reachable and
dexterous. The reachable workspace is defined as the region that the end-effector can reach with at
least one orientation of the end-effector. Therefore, whena solution for the inverse displacement
problem for a given point exists, that point is said to be in the reachable workspace. The dexterous
workspace on the other hand, is defined as a region of the reachable workspace that the end-effector
can reach with all possible orientations [1]. Here, the workspace of the manipulators are obtained
by discretizing the area and finding whether the inverse displacement solution exists or not for each
point in the discretized region.

The geometric parameters of the 3-PRR and the 3-RPRR manipulators based on Figure 1 are:
A1A2 = A2A3 = A3A1 = 1.0 m, B1B2 = B2B3 = B3B1 = 0.10 m, ri = 0.0577 m, li =
0.30 m, ψ1 = 7π

6
, ψ2 = 11π

6
, ψ3 = π

2
, ρmaxi = 0.866 m andρmini = 0 m. Table 1 lists the

absolute and relative areas (written as Abs. and Rel., respectively) of the reachable and dexterous
workspaces of the 3-RPRR relative to that of the 3-PRR. Both reachable and dexterous workspaces
of the redundant 3-RPRR manipulator are considerably larger than for the non-redundant 3-PRR
manipulator. Also, the ratio of the dexterous workspace relative to the reachable workspace has
improved considerably in the redundant manipulator.
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Figure 5: Workspace comparison between the 3-PRR (non-redundant) and the 3-RPRR (redun-
dant) planar parallel manipulators.

6 ACTUATION SCHEME FOR THE 3-PRR AND 3-RPRR MANIPULATORS

One of the reasons of the analysis of a mechanism from the point of the IDP, singularities and
workspace is path planning and eventually determining an actuation scheme for it. Adding kine-
matic redundancy to a mechanism makes the planning and controlling tasks more challenging. The
reason is that there are more independent variables for a kinematically redundant manipulator than
for a non-redundant one. On the other hand, using kinematic redundancy can help avoid some or
all of singularities and also enlarge the workspace [6; 9].

Here, the 3-RPRR and the 3-PRR manipulators are compared in terms of their performance
while following an arbitrary path. As aforesaid, kinematicredundancy increases the number of
inverse displacement solutions for each limb from a limitednumber of solutions (here up to two
solutions for the 3-PRR) to a locus of solutions. Therefore, it is necessary to apply a method to
choose a solution from all possible solutions. Here a methodis proposed based on a geometrical
measurement.

6.1 Normalised scaled incircle radius (NSIR)

As shown in the direct singularity analysis of the 3-RPRR manipulator, these configurations occur
when the lines collinear to distal links meet at a common point. Since direct singularities only
depend on the distal links, inverse singularities for the 3-PRR are the same as for the 3-RPRR. One
way to measure the closeness of the manipulator to direct singularities is to measure the radius of
the incircle5 associated with the triangle created by the three lines passing through the distal links,
as shown in Figure 6.

Assuming there are three points and that there are three lines constrained to pass through them.
It can be shown that the largest incircle radius of any triangle created by those three lines cannot
be larger than the circle that passes through those three fixed points. This makes the largest radius
of the incircle a finite and known value. As a result, it is possible to normalise the incircle radius
for any manipulator configuration by dividing the current radius by the maximum incircle radius.
Measuring incircle radius for measuring singularity closeness, originally was introduced in [10].

5In geometry, the incircle (or inscribed circle) of a triangle is the largest circle contained inside it and is tangent to
the three sides of the triangle.
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the 3-RPRR manipulator.

Besides direct singularities, inverse singularities should be taken into account. Inverse singulari-
ties occur when|Jq| = 0 for the 3-PRR manipulator and|Jqr

JTqr

| = 0 for the 3-RPRR manipulator.
Since bothJq andJqr

JTqr

are diagonal, this condition can be written as:

|Jq| =
3

∏

i=1

lic(αi−θi)

√

|(Jqr
)(Jqr

)T | =
3

∏

i=1

li

√

(c(αi−θi))
2 + (ρis(αi−θi))

2

The maximum value of|Jq| and
√

|(Jqr
)(Jqr

)T | are:

|Jq|max =
3

∏

i=1

li (11)

√

|(Jqr
)(Jqr

)T |max =

{
∏3

i=1 li ρmax ≤ 1
∏3

i=1 liρi ρmax > 1
(12)

The maximum of|Jq| and
√

|(Jqr
)(Jqr

)T | help to define a coefficient for including the effects
of the inverse Jacobian matrices.

Assume the lines collinear with the distal links intersect each other at three points calledT1,
T2 andT3, and the sides of the triangle created aret1, t2 andt3. Then, the incircle radius of the
triangle created by the distal links can be obtained as:

A =

∣

∣

∣

∣

∣

∣

xT1
yT1

1
xT2

yT2
1

xT3
yT3

1

∣

∣

∣

∣

∣

∣

r = A

t1+t2+t3
(13)

If all three lines collinear with the distal links are parallel, the manipulator is in a singularity
as mentioned before in the direct singularity analysis. When two out of three of these lines are
parallel, the radius is half the distance of the two parallellines. To take into consideration the
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Figure 9: Prismatic actuation pathρi for the 3-RPRR with NSIR the method a) When the manip-
ulator starts from the same configuration as the 3-PRR and b) When the manipulator starts from a
different configuration than the 3-PRR.

closeness of the third line to be parallel to the first two, theradius is then multiplied by a coefficient
defined as the distance of the two parallel lines over the length of the segment created by the
intersection of two parallel lines with the non-parallel third line. Therefore, if the third line is
perpendicular to the other two parallel lines, the coefficient is one. Conversely, when the three
lines are close to being parallel, the coefficient would approach zero.

The coefficient of the ratio of the determinants of the inverse Jacobian can be defined as:

ξ =
|Jq|

|Jq|max

rscaled = ξr

Nr =
rscaled

rmax
ξ 0 ≤ Nr ≤ 1 (14)

Similar equations can be written for the 3-RPRR manipulator.
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6.2 Results and Comparison

For any given pose for the end-effector, kinematic redundancy results in having loci of solutions
for each limb of the 3-RPRR manipulator. Therefore, one set of solutions should be selected. Here
for the 3-RPRR manipulator, the actuation scheme is based on maximisingthe NSIR as the cost
function for each point along the path.

Figure 7 illustrates the path considered for both manipulators to follow. Figure 7 also shows
that the chosen path is inside of the dexterous workspace of the non-redundant manipulator. Two
scenario are considered, the first one is when the 3-RPRR manipulator starts at the same config-
uration as the 3-PRR. The second scenario is when the redundant manipulator starts at another
configuration.

Figures 8, 9a and 9b show the prismatic actuations schemes for both manipulators as a function
of angleλ used to define the cyclic path. Figure 10 illustrates the redundant revolute actuators’
schemes for the 3-RPRR manipulator for the first scenario. Figure 11 illustratesthe history of the
NSIR (Nr) of both manipulators while tracking the given path.

Based on Figure 11, for the redundant 3-RPRR manipulator for both scenario,Nr maintains a
better value than the non-redundant manipulator. Also, if the 3-RPRR manipulator would not be
forced to start from the same configuration as the non-redundant manipulator, theNr value would
improve even more. On the other hand,Nr for the non-redundant 3-PRR manipulator is close to
zero throughout the entire path.

7 CONCLUSIONS

A new kinematically redundant planar parallel manipulatorwas proposed and its IDP was ex-
plained and illustrated. All types of singularities of the manipulator were analysed, illustrated and
compared to those of the 3-PRR. It was shown that the proposed manipulator can avoid direct sin-
gularities by choosing different solutions for the IDP fromthe loci of solutions. Also, as long as
none of the prismatic actuators are approaching a length of zero, it is possible to avoid the inverse
singularities. It was also shown that both reachable and dexterous workspaces of the 3-RPRR
manipulator are substantially larger than those of the non-redundant manipulator. Moreover, the
ratio of the dexterous workspace over the reachable workspace is increased in the redundant ma-
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nipulator. Finally, the actuation schemes of the two manipulators were studied for a given path.
The results show that using kinematic redundancy considerably improves the characteristics of the
manipulator by avoiding singularities. A geometrical measurement (NSIR) was proposed as a cost
function to use in maximisation of the distance to singularities while generating the path. It was
shown that even by using a local optimisation and using the NSIR as the cost function, it is possible
to actuate the redundant manipulator in a way to avoid singularities.
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