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Abstract 

This paper describes the dynamics of an artificial hand dynamic model for application to a human hand 

prosthesis. The Articulated Body Model (ABM) algorithm was selected to model the dynamics of a tree 

type robotic structure. The ABM is a numerical Newton-Euler based algorithm that solves the forward 

dynamics for a joint-link model. The main advantage of this algorithm resides in the analysis of the system 

link by link rather than the entire system analysis. This feature enables the implementation of a 

computationally efficient code and makes the algorithm generic enough to be applied to almost any robotic 

structure, with minimal additional effort. Furthermore, as the basic algorithm only handles serial structures, 

it needed to be modified to include the effect of the gravity (the weight of the links), loads on the end-

effector, elasticity and damping at the joints, and the generalization to tree-type structures. 

 

Introduction 

The work described in this article is part of a broader effort in which the principal objective is designing 

and manufacturing an artificial human hand for prosthetic applications. The scope of this paper includes 

static analysis and, more importantly, the dynamics behavior of the artificial hand. 

 

The human hand is an extremely complex manipulator, not only because it has a large number of degrees of 

freedom (DoF), but also because there is elasticity, damping and non-linear saturations at the joints. To 

further increase the complexity of the hand, the actuators — the muscles — are by nature non-linear, 

because they are not single active materials, but instead, they are mechanisms
 
[1]. The consequences of 

these non-linearities are: different responses obtained for contraction/expansion and for active/passive 
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actuation, hysteresis, dead-zones, saturation and non-linear viscosity. The hand is also a special case, since 

all the actuators are connected by a network of tendons and ligaments unlike normal robotic systems. This 

means that it is a heavily uncoupled system — one actuator moves several joints simultaneously and one 

joint may need several actuators to be moved [2]. 

 

This article will focus on the first step of the model design — the establishment of a fast numerical 

algorithm to simulate the dynamic behavior of the hand in open loop for specified torques at the joints. 

 

The Articulated Body Algorithm 

The Articulated Body Method (ABM) is a numerical Newton-Euler-based forward dynamics method. The 

starting point of the ABM and its main principle is that any articulated structure, when approximated by a 

joint-link model, can be computed link by link instead of the system as whole. Therefore, the complexity 

and computational cost are reduced [3]. 

 

ABM principles 

Considering a human hand approximated by a joint-link model as 

depicted in fig. 1. 

By selecting a link, the coordinate systems can be established in a 

way that the (i-1)-frame (at the base of the link) follows the link 

and the i-frame (at the top) has an additional DoF about the z-

axis, fig. 2. 

Since the selected link movement is unknown a priori, one must consider a 

generalized movement state with linear and angular accelerations, linear and 

angular velocities and, finally, loads and moments at the beginning and at the 

end of the link, fig. 3(a) and (b). 

 

 

Fig. 0 — Joint-Link model of a human hand. 

Fig. 0 — Link with its frames. 
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Using the principles of Newton-Euler Vector Dynamics and 

taking the base frame as reference, the following expressions can 

be derived for the linear velocity at the top frame, [4]: 

O O L

i i i i
= +v v r

1 1 1
 (1) 

Angular velocity: 

i i i
= +

1
 (2) 

Linear acceleration: 

( )O O L L

i i i i i i i
= + +a a r r

1 1 1 1 1 1
 (3) 

Angular acceleration: 

i i i i i
= + +

1
 (4) 

Linear acceleration of the Center of Mass (CM): 

( )CM O CM CM

i i i i i i i
= + +a a r r

1 1 1 1 1 1
     (5) 

Balance of forces: 

CM

i i i i
m= + =F F F a

1 1 1
       (6) 

Balance of moments: 

L O

i i i i i
= + + =M M M r F H

1 1 1
      (7) 

 

where the superscript is the application point
*
, e.g., 

O

i
a  is the linear acceleration of the link base whereas  

CM

i
a  is the linear acceleration of the CM; 

L

j
r  and 

CM

jr  are, respectively, the position vectors of the top 

frame origin and Center of Mass of a link on its base frame coordinates; 
O

i
H  is the time derivative of the 

angular momentum about the rotation axis origin. 

 

                                                             
*
 All vectors are relative to the coordinate system at the base of the link.  

Fig. 0(a) — Link accelerations and velocities. 

Fig. 3(b) — Link loads and moments. 
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In order to simplify (7), a new notation was introduced — Spatial Vectors
†
 and Matrices. The spatial 

vectors are six-dimensional quantities created by assembling the linear and angular parts of a physical 

quantity. Thus, the Spatial Velocity, Acceleration and Force
‡
 are defined by [3]: 

ˆ

O

i

i

i

=
v

v  ˆ

O

i

i

i

=
a

a  ˆ i

i O

i

=
F

F
M

 

 

Using the new notation, equations (1) to (4) become: 

ˆ ˆ
L

i

i i i

i i

i i
i

i
i

R

= +
r

R R S 0
v v

0

1

1

1 1

1

1

      (8) 

( )L

i

i i i L

i i i i i

i i
i

i
i ii

R

= + +
r

R R S r0
â â

0

1

1

1 1 1 1 1

1

1

     (9) 

Where R and S are the rotation matrix from the (i-1)-frame to the i-frame and the skeew-symmetric matrix 

of the rL
 vector, respectively. To further simplify the equations, two new entities can be introduced: the 

Spatial Transformation, X̂  [3]: 

ˆ
L

i

i i i

i ii

i
i

i

=
r

R R S
X

0 R

1

1

1 1

1

1

       (10) 

and the Spatial Axis, ˆ , which assembles the degrees of freedom of a joint into a spatial vector. For 

example, the spatial axis of a one-DoF rotational joint about the z-axis is: 

[ ]ˆ T

= 0 0 0 0 0 1         

If the joint has more than one DoF, the spatial axis becomes a matrix with 6 rows and a column for each 

DoF. 

 

With (10) the spatial velocity and acceleration become: 

ˆˆˆ ˆ
i

i i i i i
= +v X v

1 1
        (11) 

                                                             
†
 Note that the introduction of the spatial vector is just a data rearrangement. All operations (e.g. addiction or multiplication by a 

scalar) remain unaltered, thus retaining the same mathematical properties and, therefore, remaining a Vector Space. 
‡
 All spatial quantities are relative to the coordinate system origin at the base of the link. 
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( )
ˆˆ

L

i i ii

i i i i i

i i i

= + +
r

â X â
1 1 1

1 1
      (12) 

where 
i
 is a three-dimensional vector defining the rotation axis of the joint. 

The last term of the Spatial Acceleration expression is the centripetal acceleration and will be represented 

by Ĉ . 

 

The new notation can be also applied to the Balance of Forces and Moments, thus giving: 

ˆ ˆ

L

i

i CM

i i i

i i ii i O

i i i

m+

+

+ +

=

r

R 0 a
F F

S R R H

1

1

1 1

      (13) 

The algorithm requires that in previous equation the linear acceleration at the CM is replaced by the linear 

acceleration at the base of the link, ai
O

. One advantage of using this acceleration is that, by (12), it can be 

directly related with the linear acceleration of the previous frame. Introducing this modification along with 

the angular momentum equation, the spatial force balance becomes: 

( )
( )

ˆ ˆ ˆ
CM

i

CM

i

i
CM

T i i
i i ii

i i i ii O O

i i i i i

m m

m

+

+
= +

r

r

1 S r
F X F â

S I I

1

1
   (14) 

This form of the balance of forces introduces two new entities: the Spatial Inertia and Spatial Force Bias. 

The Spatial Inertia, Î, given by the spatial acceleration pre-multiplying matrix, is an intrinsic constant 

property of the link and is the spatial counterpart of the mass and body inertia: 

CM

i

CM

i

i

i i

i i O

i i

m m

m
=

r

r

1 S
Î

S I
       (15) 

The Spatial Force Bias is the result of the repositioning of the acceleration and angular momentum from the 

center of mass to the rotation axis origin: 

( )
ˆ

CM

i i i

i
O

i i i

r

I

=         (16) 
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Articular Inertia and Bias 

The Articulated Body Method computes the structure dynamics treating each link as an independent 

system, but the effect of the moving upper links on the current link have to be known. 

 

These effects are included in the algorithm through the Articulated Inertia and Articulated Force Bias. Both 

entities are obtained through the mathematical manipulation of the Spatial Balance of Forces. Considering 

that there is no tip force at the final link of a chain of links, the balance of forces is defined as follows: 

ˆˆ
i i i i
= +F Î â          (17) 

Since the abovementioned link is the last one, there are no dynamic influences from upper links. Hence, at 

the tip, the Articular Inertia and Force Bias are equal to the corresponding Spatial Inertia and Force Bias: 

ˆˆ A A

i i i i
= +F Î â          (18) 

Replacing the acceleration with (12), one obtains: 

( )ˆ ˆ ˆˆ ˆA i A

i i i i i i i i
= + + +F Î X â C

1 1
      (19) 

Pre-multiplying both sides of the equation by the transpose of the Spatial Axis, the applied moment from 

the Spatial Force can be isolated. Solving for the joint angular acceleration: 

( ) ( ) ( )( )ˆ ˆ ˆ ˆ ˆ ˆˆT A T A T A i

i i i i i i i i i i i i
= +Î Î X â C

1

1 1
     (20) 

Even though this expression represents the final objective of the algorithm, one still needs to derive the 

Articular Inertia and Force Bias. So, replacing the joint acceleration in (19) by (20) [5]: 

ˆ ˆˆ ˆ i A A

i i i i i i i i i i
= + + +F N X â N C n M

1

1 1
     (21) 

where: 

A T

i i i i i
=N Î n M n1

        (22) 

ˆ T

i i i
=M n          (23) 

ˆA

i i i
=n Î          (24) 

ˆ ˆA T A

i i i i
=          (25) 

The Spatial Balance of Forces for the next link (i-1) is given by (14). Substituting (21) in (14) for i-1: 
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( )( ) ( ) ( )( )ˆ ˆ ˆˆ ˆ ˆ ˆ
T T

i i i A A

i i i i i i i i i i i i i i
n M= + + + + +F Î X N X â X N C 1

1 1 1 1 1 1 1
 (26) 

Equation (26) is similar to (18), thus representing a fully connected link as an independent system: 

ˆˆ A A

i i i i
= +F Î â

1 1 1 1
        (27) 

where the Spatial Inertia and Force Bias are defined by the following recursive formulas: 

( )ˆ ˆ
T

A i i

i i i i i
= +Î Î X N X

1 1 1 1
        (28) 

( ) ( )ˆ ˆ ˆ ˆˆ
T

A i A A

i i i i i i i i i
= + + +X N C n M

1

1 1 1
     (29) 

 

Articulated Body Method for a serial structure 

The ABM for a serial structure (chain of links that are connected to each other by a joint) is divided in three 

parts: the first forward kinematics loop, the backward dynamics loop and the second kinematics loop [5]. 

Knowing that the base spatial velocity is zero, in the first kinematics loop, the angular velocities, the 

centripetal accelerations and spatial force biases are computed as follows: 

for i = 1 to final link do 

     i

i i i i
= +R

1 1
 

     ( )
ˆ

ˆ

L

i i i

i

i i i

=
r

C
1 1 1  

     
( )

ˆ

CM

i i i

i
O

i i i

r

I

=  

 

In the backward dynamics one computes the Articular Inertia and Articular Force Bias, knowing that the 

end-effector Articular Inertia and Force Bias are equal to the spatial Inertia and Spatial Force Bias, 

respectively: 
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for i = final link to 1 do  

     ˆA

i i i
=n Î  

     ˆ T

i i i
=M n  

     ˆ ˆA T A

i i i i
=  

     
A T

i i i i i
=N Î n M n1

  

     ( )ˆ ˆ
T

A i i

i i i i i
= +Î Î X N X

1 1 1 1
 

     ( ) ( )ˆ ˆ ˆ ˆˆ
T

A i A A

i i i i i i i i i
= + + +X N C n M

1

1 1 1
 

 

The spatial and joint accelerations are computed at the final loop, the second kinematics loop, where the 

base acceleration is equal to zero: 

for i = 1 to final link do 

     ' ˆˆ i

i i i i
= +â X â C

1 1
 

     ( )'A

i i i i i
M= n â

1  

     ' ˆ
i i i i
= +â â  

 

Gravity, Tip load and Dynamic Forces 

The Articulated Body Algorithm, as presented in the previous section, is suitable for all serial structures but 

the simulated system is somewhat far from reality, since it does not include the effect of gravity, a load on 

the end-effector and the presence of dynamic forces on the joints, i.e., elastic joints with damping. 

 

To add gravity to the system, the spatial acceleration of the base, rather than zero, must be the gravitational 

acceleration: 

=
g

â
0

0
 

The effect of the tip force can be accounted for by adding it to the end-effector articular force bias equation: 
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ˆ ˆ ˆA

End End Tip= +F         (30) 

Finally, to include the dynamic forces one must create an additional quantity (dynamic torque): 

( )Dyn Initial

i i i i i ic k= +        (31) 

where ci is the damping coefficient, ki is the spring constant and i
Initial

 is the resting position of the 

spring. Finally, this quantity must be subtracted to (25): 

ˆ ˆA Dyn T A

i i i i i=         (32) 

 

Articulated Body Method for a tree structure 

The difference between serial and tree structures is that the joints in the latter can be connected to multiple 

links. 

 

When adding this feature, one must change the formulation to properly handle the new configuration. 

Recalling the spatial balance of forces, (14): 

 
F̂i X̂i

i+1( )
T
F̂i+1 = Îiâi +

ˆ
i        (33) 

It can be shown that when multiple links are connected to the current link, (33) becomes: 

( )( ) ˆˆ ˆ ˆ
T

j i j

i i i i i i

j

+

+
= +F X F Î â

1

1
      (34) 

where the j indices represent the n upper links directly connected to the current link. 

 

To begin the derivation of the new ABM, one must consider multiple end-effectors connected to a single 

link. In this case, although being independent, all end-effectors have the same base spatial acceleration. In 

order to simplify the computation they will be treated as a group, rather than one by one: 

( ) ( ) ( )ˆˆj j A j A

i i i i

j j j

= +F Î â        (35) 

Expanding (35) and solving it in order to get the joint acceleration one obtains: 
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( ) ( )( ) ( )ˆ ˆ ˆ ˆ ˆ ˆˆT j A T j A i T j A

i i i i i i i i i i i i

j j j

= +Î Î X â C

1

1 1

   (36) 

Replacing (36) back into (35), an expression similar to (21) can be obtained. 

ˆˆ ˆ

ˆ

j j j i j

i i i i i i

j j j A j A

i i i i

= + +

+

F N X â N C

n M

1 1

1
       (37) 

Where: 

j j A j j j T

i i i i i=N Î n M n1
       (38) 

ˆj T j

i i i
=M n          (39) 

ˆj j A

i i i=n Î          (40) 

ˆ ˆj A T j A

i i i i=         (41) 

Moving to the i-1 link, replacing (37) into its spatial force balance and simplifying the result, (34) becomes: 

( )( ) ( ) ( )( )ˆ ˆ ˆˆ ˆ ˆ ˆ
T T

j i j j i j i j j j A j A

i i i i i i i i i i i i i i

j j

= + + + + +F Î X N X â X N C n M 1

1 1 1 1 1 1 1

  (42) 

Again the expressions for the articular inertia and force bias can be taken from the previous equation: 

( )( )ˆ ˆ
T

A j i j j i

i i i i i

j

= +Î Î X N X
1 1 1 1

      (43) 

( ) ( )( )ˆ ˆ ˆ ˆˆ
T

A j i j j j A j A

i i i i i i i i i

j

= + + +X N C n M
1

1 1 1
    (44) 

 

The algorithm and additional forces 

The implementation of the algorithm for a tree structure is very similar to the serial one. The only 

difference is the introduction of an extra loop to do the summations. As for the gravity, tip and dynamic 

forces, the required adaptations are the same as those made for the serial structure. 

 

The Simulation Software 

With the Articulated Body Algorithm defined and adapted to correctly model the system at hand, a 

computer program was developed. This piece of software can be divided into two parts: the core algorithm 
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and the Graphical User Interface (GUI), Fig. 4. The core algorithm was developed under the Object-

Oriented programming paradigm using ANSI C++. The use of ANSI C++ also enables the code to be 

system independent. The GUI was coded in C# and, thus limited to the Microsoft
®

 Windows Operating 

System. The graphical interface allows direct user input and outputs the results either graphically (structural 

3D plot and joint positions, velocities, accelerations and torques in 2D plots) or numerically. 

 

Fig. 4 — Application screen shot. 

 

The link between the core algorithm in C++ and the GUI in C# is done using a Component Object Model 

(COM) object that wraps the core algorithm. The COM wrapper code provides the necessary 

interoperability to C++ code, making its objects useable in any COM supporting computer language, e.g.: 

C#, Managed and Unmanaged C++, Java and Visual Basic. The setback of the COM wrapper is a slight 

slowdown of the code, because of the existence of this extra layer. 

 

Results 

The developed computer application can handle both serial and tree 

structures, but since a serial structure is a particular and simpler case of 

the tree structure, in this paper it will only be presented results for tree 

structures. 

The first structure that was analyzed is a “Y” shaped tree with three 

joints: one at the branches point of union, and one in the middle of each 

branch. The initial position is the one show on Fig. 5. The test consists 

on letting the structure fall with its own weight. Note that for simplicity there are no saturations and, 

therefore, there will be interpenetration. The position vs. time plot is shown on Fig. 6. 

Fig. 5 — Initial position. 
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Fig. 6 — Joint Position plot. 

 

Changing the previous structure into a more complex one, Fig. 

7, with the addition of one extra degree of freedom and using a 

set of two links as the end-effector of one of the branches, one 

obtains the results on Fig. 8 by letting the structure fall because 

of its own weight and the results on Fig. 9 when a torsion 

spring, with a constant of 100 Nm, is added to the first DoF of 

longest branch.    

 

 
Fig. 8 — First test of the second structure. 

Fig. 7 — Second structure with its initial position. 
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Fig. 9 — Test with a torsion spring. 

 

Conclusions 

This paper describes first step of the design of an artificial hand dynamic model.  This model will help 

define the parameters and predict the dynamic behavior of the artificial hand before its construction. 

Because of the complexity of the system in study, a fast numerical algorithm must be used, which is why 

the Articulated Body Algorithm was chosen. The main advantage that stems from the usage of this 

algorithm resides on the analysis of the system link by link, instead of an entire system analysis. This 

particularity not only enables faster code, but also makes the algorithm generic enough to be applied to 

almost any robotic structure, needing but small changes. 

 

The goal of this paper was to computationally implement the ABM algorithm for serial and tree robotic 

structures. Since the basic algorithm only handles serial structures, it needed some modifications so as to 

correctly describe the hand. These included the effect of the gravity, loads on the end-effectors, elasticity 

and damping at the joints and, finally, the generalization to tree structures.  

 

The next step will be to expand the algorithm so that it is able to handle closed-loop tree structures, thus 

enabling the simulation of gripping and gestures requiring fingers to touch each other. 
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