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Abstract

Parallel manipulators feature relatively high payload aeduracy capabilities compared to
their serial counterparts. However, they suffer from smaltkspace and low maneuverability.
Kinematic redundancy for parallel manipulators can imprbeth of these characteristics. This
paper presents a family of new kinematically redundantgorigarallel manipulators with 6 degrees
of freedom based on a 3-RR architecture obtained by adding an active prismatict jairthe
base of each limb of the 3FR manipulator. First, the inverse displacement of the pdators is
explained and equations are derived. Then the Jacobiaficesbf the manipulators are derived
and different types of singularities are analysed and detnated. It is shown that the vast majority
of singularities can be avoided by using kinematic redungan

Keywords: kinematic redundancy, planar parallel manipulators, iswalisplacement, singu-
larity analysis

ANALYSE DES SINGULARIT ES D’'UN NOUVEAU
MANIPULATEUR PARALL ELE REDONDANT

Résune
Les manipulateurs paralleles peuvent manipuler des ebgutus élevées et ont une meilleure
précision que les manipulateurs sériels. Cependant,dspace de travail est plus restreint et
ils ont moins de manoeuvrabilité. La redondance cinéjoatides manipulateurs paralleles peut
améliorer ces deux caractéristiques. Cet article ptesene famille de nouveaux manipulateurs
paralleles plans redondants ayant six degrés de libagée sur une architecture 3fR qui est
obtenue par I'ajout d’un actionneur prismatique a la basetthque chaine d’un manipulateur de
type 3-RRR. La solution du probleme géomeétrique inverse des pudaiieurs redondants est ex-
pliquée et résolue pour les manipulateurs présentés.ntatrices Jacobiennes des manipulateurs
sont dérivées et les differents types de singularib@s analysés et demontrés. Il est montré que la
majorité des singularités peuvent étre évitées disaiit la redondance cinématique.

Mots clés: redondance cinématique, manipulateurs paralleélespfaonbleme géométrique in-
verse, analyse de singularités




Figure 1: 3-HRR planar parallel manipulator.

1 INTRODUCTION

Higher accuracy, speed, and payload-to-weight ratio @&endjor advantages of parallel manipula-
tors compared to serial manipulators. A smaller workspeemjced dexterity, as well as complex
kinematic and dynamic models, are their major drawbackshMasearch has been conducted on
kinematics and dynamics of parallel manipulators [1]-g8 well as on singularity analyses [6].
The vast majority of the studies on parallel manipulatorgeehfacused on non-redundant par-
allel manipulators. Redundant parallel manipulators Hasen introduced to alleviate some of
the aforementioned shortcomings of parallel manipulat®sdundancy in parallel manipulators
was first introduced in [7] and [8]. Redundancy can be diviod two main types: actuation
redundancy and kinematic redundanagtuation redundancig defined as replacing existing pas-
sive joints of a manipulator by active ones. Actuation rethnty does not change the mobility
or reachable workspace of a manipulator but entails the poator having more actuators than
are needed for a given task and may be used to reduce theasitigalwithin the manipulator’s
workspace [9]. For example, the planar &R parallel manipulator, shown in Figure 1, becomes
redundantly actuated when a normally passive revolute gaioh asB; or D; is replaced with an
active joint.Kinematic redundancincreases the mobility and degrees of freedom (DOF) of paral
lel manipulators. Kinematic redundancy takes place whéraective joints and links (if needed)
are added to manipulators. For instance, by adding one agtinge prismatic joint to one limb of
the 3-RRR, it is converted into a kinematically redundant parata@nipulator (see Figure 2). In
this example, the resulting redundant parallel manipulags 4-DOF, one more than the planar
task space. In general, kinematic redundant parallel nudatirs need more controlling parame-

4The terminology used is the following. A 3FR mechanism indicates that the end-effector is conneotéukt
base by three serial kinematic chains (limbs), each cangisf an active (and therefore underlined) revolute joint
(R) connected to the base, followed by two passive revohitgg, the second of which connects the limb to the
end-effector. In the adopted notation, a prismatic jointilddoe shown by a P and would be underlined if it were
active.




Figure 2: 4-DOF kinematically redundant planar parallehipalator and its locus of solutions for
the inverse displacement problem, shown asiaig S.

ters than required for a set of given tasks [9]. A manipulatibin sufficient kinematic redundancy
can avoid all interior singularities, has a larger workspacd improved maneuverability [10]. Us-
ing kinematic redundancy can also allow manipulators teeasjph joint-jam failure €.g, [11]).

Compared to other research that has been pursued for parahgulators, redundancy in such
manipulators has not adequately been studied. In serialpoators, the concept of kinematic
redundancy has been broadly studied (see for instance [12])

In the present work, a family of 6-DOF kinematically reduntplanar parallel manipulators is
introduced. First, the proposed 3-RR manipulator family obtained by adding an active prismati
joint at the base of each limb of a 3RR manipulator is presented. Then, their inverse displace-
ment problem (IDP) is explained. Finally, the direct, irs@iand combined singularities of the
aforementioned manipulators are analysed and illustrated

2 PROPOSED ARCHITECTURES

Adding one degree of kinematic redundancy (1-DOKR) can icenably reduce the number of
direct singularities of a 3-RR planar manipulator but not all of them [9]. By adding 2-DRKt is
possible to avoid all direct singularities of the ®R manipulators. A symmetrical architecture is
usually desirable. Also as is shown later, kinematic redmeg increases the workspace, hence, 1-
DOKR is added here to each limb of the RR manipulator producing manipulators with a total of
3-DOKR. Therefore, the family of redundant manipulatorsgmsed here has 6-DOF for a planar
task, three of which are redundant. The added kinematicndhcies enable the manipulators
to avoid singularities, improve their maneuverabilitydamlarge their reachable and dexterous
workspaces.

Figures 3 to 5 illustrate a new family of three 6-DOF reduriddanar parallel manipulators.
The notation used for each manipulator is based on the sligipe guides on which the redundant
prismatic actuators slide. All 3-AFR manipulators are based on the non-redundariRB-Blanar
parallel manipulator proposed in [14] (Figure 1). Each lioflthe 3-PARR manipulators has one




prismatic actuator at its base. Adding prismatic redundatiators close to the base causes less
dynamic effects due to the weight of the actuators.

The redundant prismatic actuators slide on their respegtindes that can take the shape of a
triangle, a star, and a circle. The notation is thus JRRR, 3-PRRR, and 3-PBRRR~ for guides
that have a triangle, star or circle shape, respectivelya&nated revolute joint is mounted on the
prismatic actuator at poi; (throughout the present work= 1, 2, 3). Note that the solid circles
in all the figures represent active revolute joints wherbasempty circles represent passive ones.
Finally, two passive revolute joints are@t and B;, where pointB; is attached to the end-effector.

3 INVERSE DISPLACEMENT OF THE PROPOSED ARCHITECTURES

Kinematic redundancy in manipulators results in having ré@mite number of solutions to the
inverse displacement problem. That is, rather than havigita number of solutions, there may
be one or more loci of joint variable values (angles or leagtbr a given position and orientation
of the end-effector. Figure 2 illustrates a situation wheseadding an extra prismatic actuator to
the first limb, 1-DOKR is added to that limb of a 3RR planar parallel manipulator. The resulting
kinematically redundant manipulator has 4-DOF for a plaask. That is, as long as two circles
centred atB; and A; and radii ofl; andd;, respectively, intersect each other, there are infinite
solutions for the inverse displacement problem of the maatpr.

The hatched region in Figure 2 shows the area that gojndf link A, D, can cover when the
prismatic actuatord, slides within a certain range and link; D, rotates around pointl;. As it
is evident from Figure 2, poinD; as a part of linkB; D; (pinned at pointB;) can rotate a full
circle around point3;. Therefore, all possible solutions of the inverse displaeet problem for
that limb lie on the intersection of the aforesaid regionsséming that the IDP exists for limb
1, the redundant manipulator has a locus of solutions shawncam. Note that the inverse
displacement problem for each limb of the original non-retant 3-ARR has at the most two
solutions.

Finding the best inverse displacement solution for redohd@anipulators is normally formu-
lated as a numerical optimisation problem [12]. To find anroat solution of the IDP, different
cost functions may be defined for different purposes suchiasrmam energy, distance, time or
condition number [12] and [13]. Note that once a positiondoe of the active jointsi; or 6; is
chosen, there are only two solutions for the IDP of each liorkafgiven position and orientation
of the end-effector.

Figure 6 shows the details of the end-effector and its aasamtdimensions which are the same
for all the manipulators. Considering the end-effectoatam is measured from poirt and the
geometry of the 3-PRR manipulator family as shown in Figures 3 to 6, the IDP ofrttamipulator
can be written as

Equation (1) can be expressed as

2 2 2 2
B, T YDB; T(D;A;+A;0+0P+PB;) + Y(D;A;+A,0+0P+PE;) (2)
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Figure 3: 3-PRRA planar 6-DOF kinematically redundant parallel manipulato

Figure 4: 3-PRR, planar 6-DOF kinematically redundant parallel manipulato




Figure 5: 3-PRR planar 6-DOF kinematically redundant parallel manipulato

Figure 6: End-effector details for all the manipulators.




For the 3-PRR, and the 3-PRR, manipulators, the inverse displacement equations can be
written as

[ = (@ + TiCgryy) — Rep, — picr,, , — dico,)’
+(Yp + TiS(orv0) — Rsp, — pisn, , — dise,)’ (4)

wherec, ands, representos(£) andsin(«), respectively. All angles except (which is mea-
sured relative td3; B, see Figure 6) are measured with respect toHais. Also, a double archi-
tecture identification symbol indicates the angle to be usgmending on the considered kinematic
architecture. For examphaSAy* refers to the cosine af;, or 73, depending on the architecture.
Anglesr; are defined as

Ty =0 Ty = S

_ Be-fit2m _ Bo-Bitr
Top = To, — B

_ Bs—fhyan 285280 Bitr
T3pn = 2 T3 = 2

Similarly, for the 3-PRRR~ manipulator, the inverse displacement equations can liewas
17 = (p + TiC(orp) — Rep, — dico,)* + (Yp + TiS(ppn) — Rsp, — diso,)? (5)

For the 3-PRRA and 3-PRR, manipulators, the end-effector pose and the actuator rgecto
can be expressed as = [z,,y,, ¢|" andq = [p1, 01, p2, 0o, p3, 05]", respectively. For the 3-
PRRR~ manipulator, they can be defined &as= [z,,v,,¢|" andq = [51, 01, 52,02, B3, 65]",
respectively.

Regardless of the optimisation method that is chosen, thetsd inverse displacement solution
depends on the initial pose and configuration of each limb el as the cost function that is
used [10; 13]. This work mainly focuses on introducing a fgiaf kinematically redundant planar
manipulators and analysing the manipulators’ singuksitOptimal path selection is an extensive
topic on its own and is left for subsequent research.

4 SINGULARITY ANALYSIS

Jacobian matrices transform the velocity vector of the eiffelctor into a velocity vector of the
active joints. That is,
Jxx =Jqq (6)

wherex is the velocity vector of the end-effector aids the velocity vector of the associated
active joints. Considering equation (6), three types ofslarities can be defined for parallel
manipulators [16]:

1. Direct kinematic singularities whely, is singular.
2. Inverse kinematic singularities whdg is singular.

3. Combined (complex) singularities whén andJ, are singular.




Direct singularitiesi(e., |Jx| = 0) take place when there are some nonzero velocities of the
end-effector that are possible with zero velocities at tttaators. Also, direct kinematic singular-
ities are referred to as force uncertainties or as force nstcaned poses [17]. On the other hand,
inverse singularitiesi.e., when|J,| = 0) happen when there exist some nonzero actuator veloc-
ities that cause zero velocities for the end-effector. kheotto perform a singularity analysis on
the introduced 3-PRR manipulator family, their Jacobian matrices are obthinghe following
section.

4.1 Jacobian matrices of the 3-RR manipulators

By differentiating equation (4) with respect to time, thediaian matrices are given by:

t11, ti2y ti3y
Jx, = | tor, too, to3, (7)
a1y 31y t33, |45

uy, vy 0 0 0 0
J Qv — 0 0 Uy, Vo, 0 0 (8)
0 0 0 0 Uus V3,

v v 3x6

whereV = A, %, (), depending on the manipulator. For the 3HFR and 3-PRR, manipula-
tors the elements are

titax = Tp + TiCory) — Beg — picn, - — dic,

tio o = Up +TiS(rp) — RSp, — pasm, , — dise,

tisa s = ~TiS(¢+p)lila s T TiC(o+vi)tizn

uiA’* = CTiA,* t’ilA’* + STZ'A’* tiZA’*
Vg = —diSg;tins 4 + diColing 4

whereas for the 3-PRR the elements are
ting = Tp + TiCpryy) — Reg, — dicy,
tioey = Yp + TiS(gy;) — Bsp, — disy,

tise = —TiS(pruntitg T TiC(pryi)tiag
uio = _Rsﬁitilo + RC@itigo
Vi = —diSp,tiny + dicy,tiag

4.2 Direct kinematic singularities of the 3-RR manipulators

The direct kinematic singularities of planar parallel npaators with architectures whose distal
links have passive revolute joints at both ends are the sdrhey all take place when the lines
defining the distal links meet at a common point. The reasonhis is that forces can only be

transmitted in the distal link directions, and, when allleém meet at a common point, the end-
effector can rotate around that point infinitesimally wtalethe actuators are locked. As shown in
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Figures 3 to 5, all manipulators have passive revolutegahboth ends of the distal linksd., B;
andD;).
The direct Jacobian matrix of all manipulators can be rdtemias:

Ty Yn TSty Tt T1C(¢ryn) Yn licay, lisar T1l1S(ar—p—un)
Tuo = | Tt Yo —T28(042) Tty  T2C(o4p2) Yl = | l2Cay 1350y T2l2S(ar—p—u) ©)
Ty Yz —T3S(p+e3) Tty T T3C(p+4p3) Yls 3%3 Z3Cas Z350¢3 7“3[38(0(3_(15_1113) 3x3

wherez;, andy;, are the projections of link®3; D; onto theX andY axes, respectively. The
determinant ofl, is zero, when there are linear dependencies between anyrtmore rows or
columns. That is,

M+ Aol + X303 =0 (20)

where\; are scalar coefficients of linear dependency of which onlyougvo can be zero simul-
taneously and vectdr; represents théh row (or column) ofJ,,. Having only one\; nonzero
represents configurations where all the elements of a rowcolusnn are zero. Considering equa-
tion (9), the elements of the first or second column are zerenwf) = 0 or y;, = 0, respectively.
These two conditions occur when all the distal links are Ip&rto the Y-axis or X-axis, respec-
tively. In both cases, the distal links meet at a common patiirifinity. The third column becomes
zero, when all the distal links meet at poift Also, linear dependency between the rows have
the same meaning as columns. Linear dependency betweewanyws happens when two distal
links are aligned with the side of the end-effector that isvM@en them. Note that singularities are
independent of the coordinate system. For the discussepuatators, a singularity configuration
only depends on relative positions and orientations of te&aldlinks. Therefore, the aforemen-
tioned direct singularities can take place when all theatlishks are parallel regardless of the
common direction or where they all meet at a common point.

4.3 Inverse kinematic singularities of the 34RR manipulators

For redundant parallel manipulators, the maffix is not square, and therefore, the inverse kine-
matic singularities can be said to occur when the rankofis lower than the DOF of the end-
effector [8], that is, the number of rows df,,. Therefore, a kinematically redundant parallel
manipulator is in an inverse singular configuration when iairyor square matrix extracted from
Jq, IS singular. This degeneracy can also be identified as thdittmmthat sets the determinant of
Jq.Jq,” to zero. For the family of manipulators being presented,

ui +v? 0 0
Jodo, = 0 wui+ovi O (11)
0 0 uz 43y |, .

The elements of the matrix in equation (11) for the 3RMR and the 3-PRR, can be ex-
pressed as

ul'A_’* = lic(ai—n) /UiA,* = dzlzs(az—el)

whereas those for the 3-RR~ can be expressed as




a) 3-PARRA b) 3-PRRR c) 3-PRRR

Figure 7: Examples of the geometrical interpretations efitiverse kinematic singularities for the
3-PRRR manipulators.

Uig = Rlis(ai_ﬁi) Vi = dilis(ai—ai)

Since matrixJ 4, J/ is diagonal, its determinant becomes zero when any one oe ofdahe
diagonal elements become zero. Thatjs,andv?, would have to be zero simultaneously. For the
3-PRRR, and the 3-PRR, manipulators, each diagonal element would be zero whendjakie

following conditions are satisfied:

_ 2n1+41 _
in g = TH5-T + Tip 4 AND OéiAy*—TLQﬂ'—FQiA’*
n=0,1,2,.. ny =0,1,2,...

The above conditions show that inverse kinematic singiigarfor the 3-PRR, and 3-PRRR,
manipulators occur when the sliding paths of the prismaticators (.e., C;C;. for the 3-PARRA
andC;O for the 3-PARR, manipulators) are perpendicularBD; and also limbA; D; B; is fully
stretched or fully foldedi(e., A; D;||D;B;), as shown in Figures 7a and 7b.

For the 3-PRR~ manipulator, each diagonal elementlof J/ becomes zero when both of
the following conditions are satisfied

OZZ'O =T+ /GiO AND OZZ'O = NoT + Gio
n1:0,1,2,... n2:0,1,2,...

The above conditions for the inverse kinematic singukesitf the 3-PRR~, imply that the in-
verse kinematic singularities take place when at leastionteik fully stretched or fully folded and
also passes through the centre of the circke, (pointO). Figure 7c illustrates an inverse singular
configuration when the first and third limbs are fully stretdrand fully folded, respectively, and
also pass through the centre of the guide’s circle for trenpaitic actuators. It should be noted that
for the entire family of 3-PRR manipulators, as long as the manipulator is not in its sjoake
boundary, it is possible to choose one or more sets of josgldcements that avoid the inverse
singularity conditions outlined here.
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b) 3-PRRR,

Figure 8: Examples of the geometrical interpretations efdbmbined kinematic singularities for
the 3-PARR manipulators.

4.4 Combined (complex) singularities of the 3R manipulators

The combined singularities happen when both direct andseMdnematic singularities take place.
In other words, when botl,, and JqVng are singular. Figures 8a, 8b and 8c show sample
configurations in which both the direct and inverse singtidsr occur at the same time for the

three manipulator of the 3-HFR family introduced here.

5 CONCLUSIONS

A family of kinematically redundant planar parallel mangors was proposed. Their inverse
displacement problems were explained. Thereafter, thgukinty analyses were presented and
their geometrical interpretations were explained for tHeRRRR manipulator family. It can be
concluded that generally, inverse singularities occutiferwhole family of 3-PIRR manipulators
when at least one limb is fully stretched or fully folded véhthe limb is perpendicular to the
sliding direction of the prismatic actuatar., when the entire limb is collinear with the line that
passes through the centre of curvature of the slider’s patiaa point. Generally the proposed
manipulators have loci of solutions for every pose insidarttvorkspaces. Therefore, they have
the capability to be programmed to optimise different costtions such as minimum time, energy,
while constrained to avoid singularities.
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