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Abstract

From a design perspective, it is important to find the maxinmad which can be applied or sustained by
a particular parallel manipulator. Force-moment capgténalysis is necessary for this purpose. Recently,
two methods, namely, a numerical scaling factor method arahalytical explicit method, have been pro-
posed for determining the force-moment capabilities ofinelént planar parallel manipulators. In this work,
these methods are extended to redundant 6-DOF (degreeeafeim) spatial manipulators. The methods are
applied to the 3-RRRS device. Comparison between the twhodstis made. The results show that the
explicit method determines higher maximum force-momepgbdities than the scaling factor method. The
results for four different cases studied under the exptigithod are also presented.

Keywords: spatial parallel manipulator, actuation redundancy, garmment capabilities, numerical
scaling factor method, analytical explicit method, 3-RRR&hipulator.

CAPACIT ES DE FORCE ET MOMENT DES MANIPULATORS PARALL ELES SPATIAUX
REDONDANTS EN UTILISANT DEUX NOUVELLES M ETHODES

Résume

D’une perspective de conception, il est important de troleveharge maximale qui peut étre appliquée
ou soutenue par un manipulateur paralléle en particuliemalyse des capacités de force et moment est
nécessaire a cette fin. Récemment, deux nouvelles oethdianalyse ont été proposées: une méthode
numeérique de facteur d’échelle et une méthode explaii@ytique. Les deux méthodes ont été proposées
pour déterminer les limites de force-moment des maniputat paralleles planaires redondants. Dans ce
travail, ces deux méthodes sont étendues aux maniptgatiEu6 degrés de liberté spatiaux redondants.
Les méthodes sont appliguées au manipulateur 3-RRRSrhparaison entre les deux méthodes est faite.
Les résultats montrent que la méthode explicite déteerdes possibilites maximales plus élevées de force-
moment que la méthode de facteur d’échelle. Les résytair quatre cas differents étudiés sous la méthode
explicite sont également présentés.

Mots clés: manipulateur paralléle spatial, redondance d’actiorer@ntapacité de force-moment, méthode
numeérique de facteur d’échelle, méthode explicite @itale, manipulateur 3-RRRS.




1 INTRODUCTION

Parallel manipulators (PMs) are closed-loop mechanismma fixed base and a moving platform con-
nected by more than one limb. If a manipulator has more amtsi#ttan the total degrees-of-freedom (DOF)
required for the task, the manipulator is said to be redund@edundancy in PMs can be of three types,
namely kinematic, actuation, and a combination of both. Wekaatically redundant manipulator has more
limbs than required to do a particular task. The second type,actuation redundancy, is the act of in-
creasing the number of actuated joints by actuating one oe witthe passive joints without any change to
the architecture of the manipulator. Combined redundanagists of either adding a branch with some of
the passive joints actuated or adding extra joints in a tbramc making them active. Merlet [1] highlights
the importance of redundancy in solving forward displacety@oblems, obstacle avoidance, kinematic
calibration, and improvement in force control.

Actuation redundancy, which will be the focus of this pajdatys a vital role in manipulator applications
where completion of the task is critical, such as space egmins. Redundant actuation results in removal
of actuation singularities (uncontrollable space) andltesn a more homogeneous force output as shown
by Chenget al. [2]. It also helps in removal of force-degenerate configarat as shown by Firmani and
Podhorodeski [3]. If one of the joints fails during operatiactuation redundancy may ensure that the robot
is still controllable by using the extra actuated joints &edce, the task can be accomplished. This concept
of fault tolerant design and active joint failure, has betrdied in detail [4; 5] and it has been shown
that actuation redundancy helps in improving fault-taheea capabilities. Velocity capability analysis of
redundantly actuated PMs using velocity ellipsoid has lwhmre [6]. Attempts to optimize parameters like
kinematic dexterity and forces at the actuators can be ser].i Other important aspects of actuation
redundancy in PMs can be seen in [8-13].

Determination of force-moment capabilities of PMs is a viemportant factor in designing PMs. Re-
cently, a numerical and an analytical method have been peapfor finding force-moment capabilities of
planar parallel manipulators (PPMs). Nokle&yal. [14] proposed a methodology for numerically find-
ing the force-moment capabilities of redundantly-actda®®Ms using a ‘Scaling Factor Method’ which
allows actuator limits to be accounted for in the deterniimadf force-moment capabilities. More recently,
Zibil et al. [15] developed an analytical ‘Explicit Method’ for resahg the force-moment capabilities of
redundantly-actuated PPMs. This explicit method is showvbe more efficient than the scaling factor
method for the redundant case. Moreover the explicit meéttemleliminates the limitations associated with
the scaling factor method [15]. Being an analytical methbd,explicit method reduces the computational
time, allowing for more exhaustive analysis in a shorteetim

In this paper both of the above techniques to determine tre= foapabilities of PPMs are extended
to spatial parallel manipulators. The spatial 3-RRRS, whemrefers to a revolute joint and S refers to a
spherical joint, shown in Figure 1(a) will be used as an eXaropse. In this work, kinematic analysis of
the 3-RRRS is done first using screw theory. Then, the apjgitaf the scaling factor method [14] and the
recently proposed analytical explicit method [15] to that&d redundant 3-RRRS is described. Lastly, the
two methods are compared and some numerical results aenpeds

2 3-RRRS RARALLEL MANIPULATOR

The 3-RRRS manipulator (see Figure 1(a)) under consideratinsists of three RRRS branches connecting
the fixed base to the moving platform. Each branch, refeweasta limb of the manipulator, has a series
of links containing joints. Each limb of the 3-RRRS has a hetemjoint at the base followed by a second
revolute joint whose axis is perpendicular to the first anki@trevolute joint whose axis is parallel to the
axis of the second joint. The branch is connected to the ngguiatform by a spherical joint which can be
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(a) Vector diagram. (b) D&H parameters. (c) Screws for one limb.

Figure 1: Spatial 3RRRS manipulator.

modelled as three consecutive intersecting revolutegoifthus, as can be demonstrated by the Gribler-
Kutsbach mobility criterion [16], the overall mechanisns@DOF. All calculations are done in the base
frameO which, as seen in Figure 1(a), is the frame located at theeehthe fixed base formed by triangle
A A1 As As and itsx andy axes are coplanar with the base’s triangle andrthgis points in the direction of
point A; at the intersection of joints one and two.

In what follows, the actuated joints will be denoted by aneniide €.g., 3-RRRS will mean the first
two revolute joints are actuated, whereas, the rest arévpas¥he redundant case with nine actuated joints,
i.e, 3-RRRS is the one considered in this work for the force-momentyaiml The Denavit and Hartenberg
(D&H) parameters (see Figure 1(b)) given by Craig [17] aredutor solving the forward displacement
problem of the 3-RRB manipulator, from which the inverse displacement prokikethen calculated.

For the purpose of analysis, two Cartesian coordinate ryst¥ «, y, z) andO’ (u,v,w) are attached to
the fixed base and moving platform, respectively (see Fig(@@®. The following assumptions are made:
points A, As and A3 lie on thex — y plane andB;, B> and Bs lie on theu — v plane. The origin of the
fixed coordinate system is located at the centroid\ef; A A5 and the axis: points along the direction of
OA,. Similarly, the originO’ of the moving coordinate system is located at the centroifl B B, B3 and
the axisu points along the direction @ B,. For the purpose of analysis, the base and the moving ptagfor
are considered as equilateral triangles with= 7 m andr, = 6 m. For simplicity, the orientation of the
moving platform is kept the same as the moving platfoen frameO andO’ are oriented in the same way.
The link lengths are taken to lse= 6 m andh = 7 m, respectively, for the first and second link of all limbs.
For the force analysis, the maximum torque of all the actupdmt is set tot-1 Nm.

3 SCREWS FOR THE 3-RRRS

The force solution can be obtained using screw theory [18le 3crews for one limb are shown in Fig-
ure 1(c). Lets;; be a unit vector along thgth joint axis of theith limb. Here,i = 1 to 3 represents the
number of limbs ang = 1 to 6 represents the number of joints in each limb. Thenhheetjoint screws
representing the manipulator’'s actuated joints writtethanbase frame are:
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wherei = 1 to 3 andB; denotes the position vector of the spherical joint expikas¢he base frame. The
direction vectors; ; for the three limbs of the 3-RRR which will be used to find the force solution, are:

s1,1=[0,0,1], s21 =Rz, [0, ~1,00", s31=s01 2)
5172 = [0, O, 1]T, 5272 = RZ@172 [O, —1, O]T, 5372 = 5272 (3)
s13=1[0,0,1]7, sz3 =Rz, (0,1, 0", s33=s23 (4)

whereRzy, ; is the matrix representing the rotation around thexis by angled; ; and vector; is given
by:
_hcel,i$(92,i+93,i)
h; = _hsel,is(BQ,i"l‘eS,i) 5)
hc(92,i+93,i)
wherec(;) ands;) denotecos 6; andsin 6;, respectively.
A screw reciprocal to all joints except the first actuateatjds a zero-pitch screw intersecting the axes

of joints 2 and 3 and passing through the centre of the sgigoint is given by:

0] L 53,
1= | g% | ©
Similarly, the associated reciprocal screw to the secothsed joint is given by:
.
O )
r2,0 — i 7
$ 2 |: Bz X hz :| ( )
Finally, a screw reciprocal to all joints expect the thirdjigen by:
’ B; x (h; +&;)/|(h; + &)l
Vectorg; is given by:
—9C9, ;Co ;
8 = | —9561,C0,, 9
—956,;

andh; andg; represent unit vectors in the directionlef andg;, respectively.
Now, from the 3-RRRS’s reciprocal screws obtained in eguat(6) to (8), the following equations can
be obtained:
$;,i®8;;, =0, forj#i, i¢,j=11t03 (20)

where® denotes a reciprocal product.
Considering each limb as an open-loop chain, the instaotenevist of the moving platform in terms of
the joint screws is given by:

$p = 0181 + 0282 + 03,835 + 0484 + 0585 + 06,486, (11)

Taking the reciprocal product of both sides of equation (i) the reciprocal screws.; ;, the following
equations are obtained: .
$rji ®8p =9, ® 35,01, (12)
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Now, a matrix[$'], called the associated reciprocal screw (ARS) matrix indefas:

i

8] = [8r).4] (13)

Next, the matrixD, called the diagonal matrix of the inverses of the recipr@raducts of the actuated
joints and their associated reciprocal screws, is defined as

1
D=diag | ————— 14
I [&j,i ® $j,z} 1)
Let w;; be the wrench intensity of thgh actuated joint in branch If a manipulator hasn branches
andn; is the number of actuated joints in titl branch, then the relation between the wrench intensity an
the torque in terms of the reciprocal screw quantities ismias:
Tj i .
wi; = —2—— l.e, 15
" $rji ® 30 (15)

and the force applied by the end effector is given as:

F = Z Srj7iwj7i i.e., (17)
i=1 \j=1

i

Therefore, using matrice{$'] andD, the forward and inverse force (IF) solution can be derived a

F = ([$/]D)T (19)

T = ([$D)'F (20)

4 SCALING FACTOR METHOD

The scaling factor method [14] is a numerical force-momemtgutational method that allows the actuator
limits to be easily incorporated into the problem of detevimg force-moment capabilities of PMs. The
method is explained in this section. A unit wrerfghwill be used to represent the desired wrench direction:

Fopp = foppSF (21)

wheref,,, is the wrench intensity oF.;,,. To generate a force capability plot using the IF solutiome o
needs to find the maximum wrench intensf%p, in order to maximize the magnitude Bf,,,, while still
remaining within the torque/force limits of the actuatenhis.

For the redundantly actuated ca$f$ |D] forms a non-square matrix. So, the right Moore-Penrose
pseudo-inverses used to find its inverse. Out of the infinite possible solgi the Moore-Penrose solution

corresponds to the particular solution with a minimum 2amoT herefore, the inversion ¢f$'|D] yields:

75, = [81D] s (22)

'Right Moore Penrose pseudo-inverse of a mafiis: [Q]™ = QT (QQ™) ™!




whereTg,, is the vector of torques/forces to create the unit wrefielin the direction of the desireH,,,,.
Note, the screws are expressed in terms of the base fféheand the force also has to be expressed in the
base frame to do all the torque and scaling factor calcuigti&ince all the maximum actuated joint torque
and force limits;7; ;... are known for all actuated jointsof each branch, scaling factors for each actuated
joint can be found using:

-
Vg = | (23)

T$p3g,i
where~; ; is the scaling factor and . . is the torque/force of thgth actuated joint of théth branch for a
unit wrench$z in the desired force direction. The scaling factors of eiguaf23) can be placed in a set.
The scaling factorY) is the maximum factor which all joint torques/forces carsbaled by and still remain
at or below their corresponding maximum values. It is giverthe minimum of the scaling factorg ; as:

T = min(y;,) (24)

Therefore, the maximum wrencR,,,, that can be applied in the directiép is:
Fup =T [[$1D] 7, (25)

To create a force capability plot using the inverse forcetsmh, $ is varied as a set of 974 directions
evenly distributed on a sphere. This method is useful iniegjpbn since often the direction of the applied
force is known and the knowledge of the magnitude of the Isadesired. The maximum possible load
magnitude is the quantity that is directly obtained fromadbeve minimum scaling factor based IF solution.

5 EXPLICIT METHOD

Zibil et al. [15] recently proposed a explicit method for determining fitrce-moment capabilities of redun-

dantly actuated PPMs. The method determines the maximunbewuai actuators that can be set to their
maximum limits thereby maximizing the wrench to be appbedtained. This explicit method, is extended
here to the spatial case.

5.1 Planar Case [15]

In general, if a manipulator hds actuated joints and is the dimension of the space which it can span
(n < 6), then, the forward force solution can be written as:

[1D] 7 =Fua (26)

For the planar 3-RRR = 3, thereforeF can be defined d¢ cosa fsina m.]. The matrix[[$'|D] is
known as it depends only on the structural parameters antigpoand orientation of the end effector which
is known. Therefore, there ake + 3 unknowns g elements of- and 3 elements df'). Equation (26), for
n = 3, represents three equations so it can be used to determégeahthese unknowns and the remaining
k unknowns can be set arbitrarily. The basic idea is to set tingber of unknowns to the maximum value
S0 as to maximize the applied/suatained wrench. Four cases eonsidered in [15] for the 3-RRR. 1)
Maximum force with a prescribed moment, 2) Maximum appliedbrce with an associated moment, 3)
Maximum moment with a prescribed force, and 4) Maximum agglie moment with an associated force.
The first case is briefly explained here.

In the first caseq andm, are specified, therefore, there are- 2 unknowns. In other words; — 2
torques can be set to their maximum quantitigs.¢). Equation (26) is rearranged to find the two torques
in transition and the wrench intensify The formulations of all four cases can be found in [15].




5.2 Spatial Case

For the spatial 3-RRR$, = 6, therefore equation (26) becomes:
[[$/]D]6xk Trx1 = Fex1 (27)

whereF can be defined af cosa fcos fsiny m, m, m.]. The matrix[[$']D] is known as it
depends only on the structural parameters and position reratation of the end effector which are known.
Therefore, there are + 6 unknowns g elements of- and 6 elements dF). Equation (27) represents six
equations so it can be used to determine six of these unknamshshe remaining unknowns can be set
arbitrarily. The four cases considered for PPMs, now aggliespatial PMs are explained in the following
subsections.

5.2.1 Maximum force with a prescribed moment (Case 1)

In this case, direction angfes:, 5 and momentsn,, my, m, are specified (prescribed), therefoke;- 5
variables can be defined arbitrarilyg., k — 5 actuator torques can be set to their maximum quantitigs,{.
For the 3-RRIS, k = 9, therefore, there are four maxed-out actuators, and eguéir) can be rearranged
to find the five torques in transition and the force magnitfides:

__$:D1,t1 _$:D1,t5 cosal [r, —$:D1,m1 $:Dl,m2 $:D1,m4_ 0
—$ Dy ... =8 Days cosB| |1 $ Dom1 8 Damo $ Doma| [£7m 0
—$ D341 ... =8 Dsys cosy| [m3| _ [$D3m1i 8 Dame $ D3 ma| | £Tme2 0
!’ ’ —_ ’ !’ ’ - (28)
-3 D4,t1 . =3 D4,t5 0 Tt4 $ D4,m1 $ D47m2 $ D4,m4 +Tm3 My
—8$ D511 ... =8 D5y 0 Tt5 $ Dsm1 8 Dsmo $ D5 | [FTma My
| =8 D61 ... =3 Degys 0 | f 18 D6,m1 $ Demo $ Dé,ma | mz

where$' D, ,; and$' D; ,,,; are the elements of tH{g D] matrix corresponding to the transition and maxed-
out actuator indices, respectively. Equation (28) can theesolved to find the force magnitugie The sign
of the actuator value must again be taken into account whid@sing thek — 5 actuators fromk actuators.
The number of combinations of actuaters is given by:

k!

no=na X ons =G oy X 2 = 2016 (29)

wheren 4 refers tok — 5 actuators chosen fromactuators aneg refers to the sign combinations of these
k — 5 actuators. Equation (28) is solved for all: possible maxed-out combinations for the first wrench
direction. The combination which yields the solution with joint torque exceeding the limits and the

maximum force magnitude is selected as the solution for thedirection.

The next direction is picked close to the proceeding one gttex maximum force magnitude is solved
using the same combination of maxed-out torques as thissavet of computational time. The same
process is repeated for contiguous directions until ondn@ftbrques in transition exceeds the maximum
limit. When this happens, equation (28) is solved againlfata actuator combinations and the combination
which yields the solution with maximum force is selected las $olution for the current direction. The
process is repeated until the solutions for all directioesodotained. Therefore, the max-max and min-max
of the maximum sustainable force can be obtained. The maxmaximum of the maximum forces) gives

20nly two angles out of three need to be specified as the thiivé bycos? a + cos? 3 + cos? v = 1, as the directions are
varied in terms of a homogeneous unit sphere.




the maximum applicable/sustainable force in a particulaction for a given pose whereas the min-max
(minimum of the maximum forces) corresponds to the forcectvithhe manipulator can apply/sustain in any
direction for a given pose. In other words, the min-max isrtiisimum force which the manipulator can

sustain in all directions for a particular position and otéion of the end effector. It is the min-max force
that is important when designing any PM as it is the one deténgnits minimum capabilities.

5.2.2 Maximum applicable force with an associated momeaséQ)

In this case, the moment is considered as an unknown varabblae maximum force will have some
associated moment. That is why the maximum magnitude oéftoand in this case is called maximum
applicable force as compared to just maximum force for Casas It has an associated moment component
along with it which cannot be fixed by the user. There(@re- 5 + 3 (unknown moment)= k — 2 actuator
torques that are maxed-out and two torques are in tranditiothe 3-RRFS (¢ = 9). The number of
maxed-out actuator combinations is given by:

k! k—2
ne=mnyq X ng — x 2"7% = 4608 30
¢TSS (k- 2) % (k- 2)! (30)
and the matrix formulation for this case is:
__$:D1,t1 _$:D1,t2 cosae 0 0 O] ™ _$:D1_,m1 $:D1,m2 $:D1,m7_ iTml
—$,D2,t1 —$,D2,t2 cosf 0 0 0] |7 $/D2=m1 $,D27m2 $,D2"m7 :t:m2
—$,D3,t1 _$,D37t2 cosy 0 0 O f _ $/D3,m1 $,D3,m2 $/D3.,m7 :IZTmi a1
—8 Dap1 =3 Dayo 0 1 0 0f |Ma $ Dimi $ Dama . $ Damr :l:Tmr
—$,D57t1 —$,D57t2 0 01 0 My $ D5,m1 $,D5,7n2 . § D5=m7 ZETZ;
_—$,D6,t1 —$,D6,t2 0 0 0 1fLm 15 De,m1 $,D67m2 o $ Dg | tr

As before, the maxed-out actuator combinations that retolations where at least one of the actuator
torques in transition exceed their corresponding maximaines are not taken into account. From the
remaining solutions, the one yielding the highest force mitage is selected as the solution for the first
direction. The maxed-out actuator signs correspondingpeéosblution for the first direction are kept the

same for contiguous directions. The next directions ara #tdved using the same actuator combination
as the previous one until one of the torques in transitioreeas its maximum value. When this happens,
equation (31) is solved again for all> actuator combinations for the maximum force condition.

5.2.3 Maximum moment with a prescribed force (Case 3)

This case is similar to Case 1 for the spatial case fandb, i.e., four actuators can be maxed-out. The
direction of the moment is now varied and forgg (f,, f.) is fixed. The matrix formulation is:

—$,D17t1 —$,D17t5 0 —Ttl_ $,D17m1 $/D17m4 _fw_

—$Dayy . =$Days 0 | |7 $Domr . $Domal| [+£7m £,

—$:D37t1 —$:D37t5 0 Tt3 _ $:D37m1 $:D37m4 :l:TmQ . ,fz (32)
-5 D47t1 .. =93 D47t5 cos Tt4 $ D47m1 o 3 D4_’m4 +Tma3 0

—$,D57t1 —$,D57t5 COSﬁ Tt5 $,D57m1 $/D57m4 :l:Tm4 0

__$,D6,t1 _$,D6,t5 COSs ’7_ _m_ _$,D6,m1 $/D6,m4_ L 0 4

Equation (32) is solved for all 2016 combinations for thiseealThe combination which yields the maximum
magnitude of moment: is selected as the solution for the first direction. Agairsaee computational time,
the next directions are solved in the same manner as medtiorike previous cases, the only difference is
instead of the maximum magnitude of the force, the maximurgmtade of the moment is the condition
being checked.




5.2.4 Maximum applicable moment with an associated foreséCl)

This case is similar to Case 2 described before, for which, 2 actuators can be set to their maximum
capabilities f o = 4608). Equation (27) is rearranged to solve for the moment magdaitand associated
force values:

——$,D17t1 —$,D17t2 0 1 0 0_ T —$/D17m1 $,D17m2 $/D17m7_ £Tm1
—$' Doyt —$Dosy 0 0 1 0| |7 $Dymi 8 Dopmo . $Domr fm?
~$'Dsn —$Dsie 0 0 0 1| |m| _ |$Dym1 $Dspmz o $Dyr L (33)
—$ D47t1 —$ D47t2 cose 0 0 O fm $ D4,m1 $ D47m2 $ D4,m7 :I:Tm;l
—$/D57t1 —$/D57t2 COSﬁ 0 0 0 fy $/D5,m1 $/D57m2 $/D5,m7 :IZTZG
_—$/D67t1 _$/D6,t2 COos 7y 0 0 0_ fz _$/D6,m1 $/D6,m2 $/D6,m7_ :|:Tm7

Using the above equation with the method described eatfierforce-moment capabilities can be found
over the entire workspace.

6 RESULTS

The maximum applied force magnitude was calculated usiagvio methods for the redundant 3-REBR
and the results for various positions of the end effectortabelated in Table 1. The architectural and
torque parameters used for the 3-RRRS are the ones mentioBSedtion 2. It is important to note that the
comparison is made for the first case of the explicit methadt thie scaling factor method (using only the
right Moore-Penrose pseudo-inverse) as this is the onky cbthe explicit method which can be compared
with the scaling factor method. Note that in this case, th&imam magnitude of the applied/sustainable
force is found and the moment values are set to zero for thgpanson given in Table 1.

From the results it can be seen that the maximum magnitudercé fgiven by the explicit method is
higher than the scaling factor method. This result is duda¢oféict that a greater number of actuators are
performing at their maximum or very close to their maximumiti In the scaling factor method, only
the particular solution is used and not the particular smhuplus the homogeneous solution as was done
in [14]. The right Moore-Penrose pseudo-inverse was usethéoparticular solution. Not incorporating the
homogeneous solution was another factor that caused thiésresth the scaling factor method to be lower.
The force-capability plots for Case 1 using the explicit Inogk at various positions of the end effector can
be seen in Figure 2. The force polyhedra represent the foheesianipulator can apply/sustain in all the
applied directions for a particular position of the end etife. Out of these magnitudes, the maximum value
is the one taken as the maximum force magnitude that the miatgp can apply/sustain for that particular
position and this is the one compared in Table 1.

The force capability plots corresponding to Case 2 of thdigkpethod can be seen in Figure 3. The
maximum magnitudes of forces sustainable/applicable éyrianipulator for this case are higher than for
Case 1 compared to the same positions of the end effect@.idbecause in Case 1, four actuators torques
are maxed-out and five are in transition while in Case 2 segtrator torques are maxed-out and only two
are in transition, thus leading to a higher sustainabldizgige force. The other results of this case are
presented in Table 2 along with the values of the associatedents at the maximum force magnitude.

For the two cases, which involve finding the maximum magmritatimoment, the results are tabulated
in Table 3. In Case 3 the prescribed force value is set to 0 §eheral, it can be set to any required value.
From the results it can be seen that the moment magnitudeslat&id from the case in which the force
is associated are higher than the case in which the forceescpbed. This can be understood from the
reason that in Case 4, seven actuator torques are set to mmaxas compared to four maximum torques
corresponding to Case 3.




Table 1: Explicit Methodss. Scaling Factor Method

Position Explicit Method: Case 1 Scaling Factor Method
(x;y; 2) | Maximum Force Magnitude (N) Maximum Force Magnitude (N
(0; 0; 4) 0.7124 0.5925
(0; 0; 6) 0.7519 0.6362
(0; 0; 8) 0.8513 0.7174
(0; 0; 10) 1.0541 0.8887
1;2;4) 0.9233 0.8574
(1;2;8) 0.8100 0.7196
1;2;9) 0.8573 0.7453
Table 2: Explicit Method: Case 2
(x;y; z) | Maximum Force Magnitude (N) Associated Moment Magnitude (Nm)
(0; 0;4) 2.5173 12.4770
(0; 0; 6) 2.3660 16.3360
(0; 0; 8) 2.3092 20.1230
(0; 0; 10) 2.3141 23.9280
(1;2;4) 1.6210 8.2242
(1;2;8) 1.5614 9.6003
(1;2;9) 1.5756 11.4540

Fy A Fx Fy A Fx Fy - Fx Fy - Fx

(a) Position (0; 0; 4). (b) Position (0; O; 10). (c) Position (1; 2; 4). (d) Position (1; 2; 8).

Figure 2: Force plots for the redundant 3-RRRanipulator for Case 1.

(a) Position (0; 0; 4). (b) Position (0; O; 10). (c) Position (1; 2; 4). (d) Position (1; 2; 8).

Figure 3: Force plots for the redundant 3-RRRanipulator for Case 2.
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Table 3: Explicit Method: Case 3 and Case 4

Position Case 3 Case 4
(X;y; z) | Maximum Moment Magnitude (Nm) Maximum Moment Magnitude (Nm
(0; 0; 4) 18.0254 18.5187
(0; 0; 6) 18.0264 18.7158
(0; 0; 8) 18.0629 19.3615
(0; 0; 10) 18.1143 23.9029
(1;2;4) 6.4565 10.7824
(1;2;8) 4.8384 14.5804
(1;2;9) 5.0761 15.9612

From the results of all four cases it can be seen that as théeaof maxed-out torques which can be
explicitly set to the maximum value is changed, the forcefant capability is greatly affected. Also, the
more redundant the manipulator is, the greater the numbtrgdfies which can be set to their maximum
values and the larger the force/moment that the maniputatosustain/apply. So, actuation redundancy has
a vital role in enhancing the force and moment capabilitid3Ms. In addition to that, the first and the third
case which involve finding the maximum force and maximum mmam&re useful in practical applications
where the user wants to specifically set the value of momeahf@ee, and then find the maximum value
of the force/moment that the manipulator can sustain/aggigse two cases could further help in choosing
the design variables for the manipulator depending on tleitas required to do and hence, become a part
of the task planning process.

7 CONCLUSION

Two methods, namely a scaling factor method and an expliethod, for finding the force-moment capa-
bilities have been successfully extended to redundantaspa&nipulators and compared. The methods are
applicable to both non-redundant and redundant spatial Fiksexplicit method, being more efficient, can
be incorporated in the design of PMs. Further, this methedbeaextended to other spatial PMs and the
force-moment capability analysis can be done. Also, usé®fkekplicit method in finding the workspace
regions where the manipulator can sustain/apply a paaticdsired value of force/moment is possible.
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