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1 Introduction

The test trajectory for a SCARA system involves a vertical upward translation of 25mm, a horizontal translation of
300mm and a final vertical downward translation identical to the first one. The system has to move through this
symmetric trajectory back and forth with a rotation of the end-effector of 180◦ in 500ms with a payload of 2kg. This
test trajectory includes square corners between the vertical and horizontal segments, which are obviously sources of
acceleration discontinuities. These corners have to be smoothed in order to provide Second-order geometric continuity

G2 [1] throughout the test trajectory. To simplify the equations in the later sections, as shown in Fig.1, we will work
with the first half of a smoothed trajectory by using the symmetry plane of the trajectory along the z axis. This means
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Figure 1: Half of the proposed Trajectory with its parameters

that the parameters value in Fig. 1 are a = 150mm and b = 25mm. Also, the time tAD, which is the time required to
do half of the trajectory, obviously passing through points A-B-C-D, is fixed and is equal to a quarter of the cycle time
of the test trajectory, which means that tAD = 125ms. Finally, the rotation of the end-effector between points A and D
will be 90◦.

2 Trajectory Smoothed with Lamé Curves

Lamé curves are defined by the equation

um + vm = 1 m = 1, 2, . . . (1)

As m increases to infinity, equation (1) leads to a square shape. In our case, a value of m = 3 will be used because it
provides G2-continuity [1] without increasing too much the complexity of the equations. For given parameters d = a− c
and e = b − h, shown in Fig. 1, the equation that we will use to smooth the curve in the coordinate frame x2-z2 is
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For equation (2), we can find x2 and z2 in terms of θ [2] by applying an affine transformation scaling every value of
x2 and z2 correspondingly to parameters d and e, such that

x2(θ) =
d

(1 + tan θm)
1/m

(3a)

z2(θ) =
e · tan θ

(1 + tan θm)
1/m

(3b)

These relations are very important and will be used in the next section.

3 Position, Velocity and Acceleration w.r.t. the Trajectory

To be able to associate a cartesian position, velocity and acceleration to any given point on the trajectory based on
a given velocity profile defined over the trajectory, we need to know the relation between the position, velocity and
acceleration of the Lamé curve w.r.t. the nominal displacement s(t), velocity ṡ(t) and acceleration s̈(t) of the velocity
profile over the constrained time.

Since the cartesian position equations of x2 and z2 in terms of θ have already been defined with equations (3a) and
(3b), what we need here is a relation between θ and s such that θ = θ(s). Of course, such relation is usually impossible to
find mathematically. Our approach here uses the fact that we work incrementally in time, which gives us a finite number
of points over the trajectory. Then, we can converge numerically with the Newton-Raphson optimization method at each
point of the trajectory that lies on the Lamé curve with the use of equations (3a) and (3b).

Assuming that s(tk), ṡ(tk) and s̈(tk) are given for every k = 1, 2, . . . , NAD, where NAD is the total number of points
over the trajectory. We need to consider that the Lamé curve is between point B and C of the trajectory, as we saw in
Fig. 1. If we state that all the time-increments ∆t = tk+1 − tk are equal and assume that the values of tAB and tAC are
known, then, we can define two points N1 and N2 associated to two distinct time limits tN1

and tN2
such that

tAB ≤ tN1
< tAB + ∆t (4a)

tABC − ∆t < tN2
≤ tABC (4b)

The two points N1 and N2 will actually be the limits of the algorithm using the Newton-Raphson optimization method
to find all the angles θk associated to each displacements sk such that

0 ≤ θk ≤ π/2

with
sk = s(tk) − sAB = s(tk) − h k = N1, . . . , N2 (5)

and where sAB defined as sAB = s(tAB) = h 6= 0. This relates the angle θk to the displacement made on the trajectory
after point B. We can also associate the length of the curve, which is, as shown in Fig. 2, the same as the displacement
on the trajectory from point B, to the following equation

sk =

∫ θk

0

√

(

∂x2(θ)

∂θ

)2

+

(

∂z2(θ)

∂θ

)2

dθ (6)

In equation (6), the only unknown is θk. Obviously, solving this equation analytically for θk is certainly very difficult
or maybe even impossible. This is where we introduce the Newton-Raphson optimization method to numerically find
the value of θk for every k = N1, . . . , N2.

First, we need to define our objective function. To simplify the presentation, we will use ϑ = θk, where ϑ will now be
the unknown we will be searching for. If we also modify equation (6) to make it equal to zero, we obtain our objective
function

f(ϑ) =

∫ ϑ

0

√

x′

2(θ)
2 + z′2(θ)

2dθ − sk = 0 (7)

Basically, the Newton-Raphson method is an iterative method that approaches the solution of determined nonlinear
systems in a finite number of iterations. In our case, we have one unknown, ϑ, and one equation, equation (7). At every
iteration, the value of ϑ is updated such that

ϑi+1 = ϑi −
f(ϑi)

f ′(ϑi)
(8)
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Figure 2: θk versus sk

where

f ′(ϑ) =
√

x′

2(ϑ)2 + z′2(ϑ)2 (9)

Equation (8) is repeated iteratively until
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∫ ϑi

0

√

x′

2(θ)
2 + z′2(θ)

2dθ − sk
√

x′

2(ϑi)2 + z′2(ϑi)2
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≤ ǫ (10)

where ǫ is the tolerance desired to stop the algorithm.
Now, since we know the relation between θk and s(tk), when k = N1, . . . , N2, we can now figure out the cartesian

position of every time incremented points of the trajectory with respect to the x-z coordinate frame shown in Fig. 1,
assuming there is a given velocity profile. With respect to time, from point A to point D, the equations for x(t) and z(t)
can be defined as

x(t) =











a if t ∈ [0, tAB]
a − (d − x2(θ)) if t ∈ (tAB, tAC ]

c
(

1 − t−tAC

tCD

)

if t ∈ (tAC , tAD]
(11a)

z(t) =







b − s(t) if t ∈ [0, tAB]
b − (h + z2(θ)) if t ∈ (tAB, tAC ]
0 if t ∈ (tAC , tAD]

(11b)

4 The Next Step

Future work will consist in the optimization of the proposed trajectory w.r.t. the lengths of the horizontal and vertical
segments c and h. Different velocity profiles will be used to determine the set of optimized parameters that minimizes
the rms value of the time-rate of change of the kinetic energy over the whole trajectory.
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