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Abstract

The general problem of static balancing with a torsion bar is first defined for the case of a one-dof mechanism. Equa-
tions representing the balancing and the elastic deformation criteria are then obtained. These equations are adapted for
the introduction of a reduction system in the mechanism and then solved for a general case.
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Équilibrage statique avec une barre en torsion

Résumé

On définit d’abord le problème général de l’équilibrage statique avec une barre en torsion d’un mécanisme à un
degré de liberté. Les équations représentant cet équilibre statique et le critère de déformation élastique de la barre
sont ensuite développées. Elles sont adaptées pour l’introduction d’un système de réduction dans le mécanisme, puis
résolues pour un cas général.

Mots clés: équilibre statique, barre en torsion
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1 INTRODUCTION

The notion of static balancing is well documented in the literature. It is generally achieved through the use of coun-
terweights or springs. However, these methods are not very well suited for applications where the payload and the
vertical amplitude of movement are both large. The use of counterweights requires either the addition of significant
mass to the system or a larger working space. The addition of a large mass significantly increases the inertia of the
system, which is undesirable if it is to be in movement itself, while the necessity of more space is often impossible in
several applications. Also, because of the large variations of potential energy involved and of the physical limitations
of typical springs, their use is not suitable for these applications. In this case, the use of a torsion bar is much more
relevant, especially that of a round bar.

2 GENERAL PROBLEM

Consider the one-degree-of-freedom mechansim of Fig. 1 that can be used to raise or lower a mass m. The mass is
linked to a rotating joint by a massless arm of length l and the torsion bar is rigidly linked to the joint. K ′ is a section
property representing the torsional moment of inertia of the bar and θ represents the position of the arm.
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Figure 1: One-dof mechanism

If the bar has a length L and is at rest for θ = 0, the relation between its angular position (θ) and the torque it exerts
on the joint (T) is

T =
K ′Gθ

L
(1)

where G is the shear modulus of the bar material. In order for the load to be statically balanced, the torque produced
by the rotation of the bar must be equal to the torque that the payload produces about the pivot. That is,

K ′G

L
θ = mgl sin θ (2)

where g is the gravitational acceleration. Unfortunately, the gravity torque is proportional to sin θ whereas the bar
torque is directly proportional to θ. Consequently, perfect static balancing will be impossible to acheive in this case.
Fig. 2 illustrates the situation for a typical case, where the difference between the two curves represents the residual
torque. However, by choosing carefully the values of initial torque in the bar (torque at θ = 0) and of equivalent
stiffness (K ′G/L), the residual torques obtained are sufficiently low for this method to be considered viable. It is also
desired that the balancing be adjustable for different loads, which can be achieved by varying the effective length of
the bar.

In addition to balancing the torque of the load, it is imperative that the deformation in the bar remains elastic since the
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Figure 2: Torque at the pivot

movement will be repeated. The maximal stress in the bar is a function of its section. In the case of a round bar,

τmax =
Td

2J
(3)

where d is the diameter of the bar and J the polar moment of inertia of the cross section. For this application, the bar
is only subjected to torsional stress. Using the Von Mises criteria to determine failure, the equivalent stress must be
lower or equal than the yield strength Syt of the bar material:

σe =
√

3τ2
max = 1.73τmax ≤ Syt (4)

3 MATHEMATICAL REPRESENTATION

It is impossible to achieve perfect static balancing with the simple use of a torsion bar. The combination of a reasonable
maximal bar length, say 0.5 m, combined with a desired angular range of 90 degrees, will produce severe plastic
deformation. This problem can be avoided with the use of a reduction system between the bar and the joint of the
mechanism. If r is the reduction ratio and subscripts b and j respectively refer to the bar and the joint, the reduction
system produces the following relations:

Tb = rTj (5)
θj = rθb (6)

The elastic behaviour of the bar can then be modeled by

Tb =
K ′G

L
θb =

K ′G

Lr
θj (7)

To acheive static balancing:

Tb = rTj (8)

K ′G

Lr
θj = rmgl sin θj (9)

Solving (9) for the reduction ratio,

r2 =
K ′G

Lmgl

θj

sin θj
(10)

Equation (10) needs to be satisfied in order to obtain static balancing. By combining equations (3) and (4), a condition
for the maximal allowable torque in the bar, τma, is formulated in order to keep the deformation in the elastic domain.

τmax ≤ τma =
Syt

1.73
(11)

Tb max d

2J
≤ Syt

1.73
(12)
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From equation (10) and inequality (12) and considering the use of a round bar for which K ′ = J = πd4/32:

r2

d4
=

π

32
G

Lmaxmmingl

θj

sin θj
(13)

r

d3
≤ Syt

1.73
π

16mmaxgl
(14)

In equation (13), L was replaced by Lmax to account for the desired value of Lmax, and m was replaced by mmin

because it is the minimal load that will require the maximum bar length to be balanced. The maximal torque in the bar
will occur for the maximal payload (or mmax), so equation (15) was substituted into (12) to obtain (14):

Tb max = rTj max = rmmaxgl (15)

In these equations, all the parameters except r and d are either material properties or constants that can be known or
approximated from the physics of a desired problem. When this is the case, we are left with a system of 2 unknowns
and 2 relations that can be solved to obtain values of r and d providing static balancing. It is important to remember
that we only have partial balancing. The minimization of the residual torque will not be treated here. Instead, we
neglect the ratio (θj/ sin θj) of equation (13) and leave everything else as stated. Therefore, we obtain a feasible
partially balanced system.

4 RESULTS

If the material is properly chosen, the resolution of the aforementioned system gives values of r and d which balance
the system and maintain elastic deformation in the bar. Such materials include aluminium alloys Al 7075 or titanium
alloys Ti 64. The system to solve can be represented by a graph such as the one of Fig. 3, where the gray area
represents the elastic deformation zone, which is delimited by inequality (14), and the curve, representing equation
(13), corresponds to the different combinations of r and d that would balance the system. All points located on that
curve and in the gray area are then acceptable solutions to the problem. But since it is desirable to have a bar of
minimal mass and a reduction ratio as low as possible, the optimal choice is the point of intersection between the two.
For example, consider a system for which l = 1 m, Lmax = 0.5 m, mmin = 25 kg, mmax = 100 kg, g = 9.81 m/s2

and with a bar of titanium alloy with properties G = 42.9 GPa, Syt = 1120 MPa and ρ = 4430 kg/m3. The
graphical solution is shown in Fig. 3.
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Figure 3: Optimal design of the torsion bar

The optimal solution is r = 12.02, d = 4.53 cm and mb = 3.57 kg.The mass of the bar is low and hence does not
add a lot of inertia to the system. The reduction ratio is also quite low and would be easy to obtain. This solution is
therefore viable. It is also interesting to note the variation of results as a function of the choice of the bar length. With
all other parameters constant, the mass of the required bar will always be the same for different values of Lmax. This
has been demonstrated mathematically and shows that energy absorption is a mass property for a given material. A
variation of Lmax will also create an important variation of r, but a small variation of d.

4



5 CONCLUSION

The general problem of static balancing with a torsion bar was defined for the case of a one-dof mechanism. Equations
representing the balancing and the elastic deformation criteria were then obtained. By solving these equations for a
general case, good results were obtained, thus validating the interest in this method.
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