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ABSTRACT

Force-unconstrained (singular) poses of the 3-PRR planar parallel manipulator (PPM), where the
underscore indicates the actuated joint, and the 4-PRR, a redundant PPM with an additional
actuated branch, are presented. The solution of these problems is based upon concepts of reciprocal
screw quantities and kinematic analysis. In general, non-redundant PPMs such as the 3-PRR are
known to have two orders of infinity of force-unconstrained poses, i.e., a three-variable polynomial in
terms of the task-space variables (position and orientation of the mobile platform). The inclusion of
redundant branches eliminates one order of infinity of force-unconstrained configurations for every
actuated branch beyond three. The geometric identification of force-unconstrained poses is carried
out by assuming one variable for each order of infinity. In order to simplify the algebraic procedure
of these problems, the assumed or “free” variables are considered to be joint displacements. For
both manipulators, an effective elimination technique is adopted. For the 3-PRR, the roots of a
6!"-order polynomial determine the force-unconstrained poses, i.e., surfaces in a three dimensional
space defined by the task-space variables. For the 4-PRR, a 64-order polynomial determines
curves of force-unconstrained poses in the same dimensional space.

POSES SINGULIERES DES MANIPULATEURS PARALLELES PLANS
3-PRR ET 4-PRR

RESUME

Les poses singuliéres des Manipulateurs Paralleles Plans (MPP) 3-PRR, ou la lettre soulignée
indique le joint actionné, et 4-PRR, un MPP & actionnement redondant, sont présentées. La solution
de ces problémes est basée sur les concepts de visseurs réciproques et d’analyse cinématique. En
général, les MPP non redondants tels que le 3-PRR sont connus pour avoir deux ordres d’infinité
de poses singuliéres, i.e., un polynéme dont les trois variables sont la position et 'orientation de
la plate-forme mobile. L’inclusion de chaines redondantes élimine un ordre d’infinité de poses
singuliéres pour chaque chaine actionnée au-dela de trois. L’identification géométrique des poses
singuliéres est effectuée en considérant une variable par ordre d’infinité. Afin de simplifier la
résolution de ce probléme, les déplacements des articulations sont les variables considérées dans
cet article. Pour les deux manipulateurs, une technique d’élimination efficace est adoptée. Pour
le 3-PRR, les racines d’un polynéme de degré 6 déterminent les poses singuliéres qui forment des
surfaces dans I'espace tridimensionnel défini par la position de 'orientation de la plate-forme mobile.
Pour le 4-PRR, un polyndéme de degré 64 détermine les poses singuliéres qui forment des courbes
dans ce méme espace tridimensionnel.



1 INTRODUCTION

Parallel manipulators (PMs) compared to serial manipulators have higher structural stiffness
and greater payload accuracy but smaller and less dexterous workspaces. In addition, PMs can
have force-degenerate configurations. Merlet [1] defined that a singular configuration of a PM
corresponds to a configuration where it is not rigid, i.e., a force-degenerate configuration. If the
branch resultant forces together do not span the system of forces to be applied or sustained, the
manipulator is degenerate and is force unconstrained. Physically, the mobile platform can have
motion even if all actuated joints are locked, i.e., the manipulator may instantaneously gain one or
more unconstrained degrees of freedom (DOFs).

Gosselin and Angeles [2] analyzed singularities in Jacobian matrices resulting from differenti-
ating the nonlinear kinematic constraints f(6,x) of the input and output variables, with respect

to (wrt) time. This leads to a relationship, [A] x+ [B] 6= 0 of input and output speeds, where
[A] = 0f(0,x)/0x and [B] = 0f(0,x)/00 are both m x m Jacobian matrices with m being the
number of DOFs of the linkage. Three different types of singularities were reported for closed
kinematic chains: Type I (instantaneous motion singularity) occurs when [B] is singular, Type II
(force singularity) occurs when [A] is singular, and Type III occurs when both are singular.

For planar manipulators, three dimensions of task-space coordinates exist. These coordinates
can be represented by the location (z and y) and orientation (¢) of the mobile platform. Sefrioui and
Gosselin [3] identified the singular poses of the 3-RPR layout. For constant payload orientation,
these singularities can be plotted as quadratic curves in the zy plane. Bonev and Gosselin [4]
reported that, for constant orientation, the singularity loci of all branch arrangements of the 3-RRR
configuration can be represented by curves of degree 42. Chan and Ebert-Uphoff [5] determined
the manifold of singularities and showed how unconstrained motions are projected on it. Bonev
(6] and Bonev, Zlatanov and Gosselin [7] presented a detailed study of the singular configurations
of all possible actuation configurations of 3-DOF PPMs via screw theory.

For non-redundant PPMs, the number of actuators n and DOF m are equal. Merlet [8] de-
scribed that the inclusion of redundant actuators may lead to improvements in various analyses
such as forward kinematics, singular configurations, and optimal force control and calibration. In
order to reduce uncertainty configurations, Notash and Podhorodeski considered over-constrained
parallel manipulators by including either redundant actuation within branch(es) [9] or redundant
branches [10]. Nokleby, Fisher, Podhorodeski, and Firmani [11] demonstrated that the use of
redundant actuation within branches improves significantly the force capabilities of parallel manip-
ulators. Collins [12] proposed a method for choosing redundant actuator locations that provide
singularity-free motions. Pseudoinverse techniques were applied for solving the inverse of the Ja-
cobian. Dasguspa and Mruthyunjaya [13] showed that the use of redundant actuation leads to a
reduction or even an elimination of force singularities. Similarly, O’Brien and Wen [14] showed
that the use of redundancy improves the manipulability of the original mechanism by comparing
the condition number of non-redundant and redundant manipulators. Chan [15] considered that
using a single redundant actuator the dimension of the manifold of singularities can be reduced by
an order of one. Firmani and Podhorodeski [16] and [17] eliminated families of force unconstrained
configurations by including redundant actuation within one branch. Furthermore, Firmani and
Podhorodeski [18] investigated the force-unconstrained poses of the 4-RPR manipulator by con-
sidering the force-unconstrained poses of two three-branch assemblies, then by means of Grébner
Bases determining a polynomial in terms of two task-space variables.

The outline of the remainder of the paper is as follows. In Section 2 and 3, the force-
unconstrained poses of the 3-PRR and 4-PRR are presented. Section 4 is a discussion of the
results. The paper finishes with conclusions in Section 5.



2 3-PRR MANIPULATOR

2.1 Background

The 3-PRR manipulator was first introduced by Gosselin, Lemieux, and Merlet [19]. Each
branch is composed of a prismatic joint fixed to the base, followed by two revolute joints separated
by a link. In order to reduce the inertia of the mechanism, the prismatic joints are actuated allowing
high speed applications. In [19], the kinematic analysis of the inverse and forward problems, the
input and output speed Jacobian matrices, and a workspace description were presented.

For a constant payload orientation, Bonev [6] and Bonev, Zlatanov and Gosselin [7] identified the
singular configurations of this manipulator. These configurations can be represented by a 20¢"-order
multivariable polynomial in terms of x and y. However, an exhaustive process of simplification,
due to the fact that the resulting equation is expressed in terms of square roots, is required. The
geometric identification of the singular poses requires ¢ to be varied, i.e., 0 < ¢ < 27, making this
method computationally expensive.

To the best of the authors’ knowledge, no mathematical software can determine a single symbolic
expression for force-unconstrained poses of the 3-PRR in terms of z, y, and ¢. Nevertheless, if a
symbolic expression were to be found, the force-unconstrained poses could be plotted by assuming
two of these variables, i.e., there is an order of two infinities (O (002)) of choices. In order to make
the solution more efficient the two“free” variables are chosen to be joint displacements.

In this section, the force-unconstrained poses of the 3-PRR are identified. First the Denavit and
Hartenberg (D&H) parameters [20] of each branch are determined. Second, screws and associated
reciprocal screws are found. Third, the loop-closure equations that define the geometry of the
manipulator are derived. Fourth, the elimination process is carried out by properly selecting the
“free” variables and the force-unconstrained poses are identified.

2.2 Denavit and Hartenberg Parameters

The notation of the geometric variables of the manipulator are shown in Figure 1. The homo-
geneous transform of each branch base b; wrt to {0} is shown below. D&H parameters describing
the 3-PRR layout are given in Table 1, where j and ¢ represent the joint and branch numbers,
respectively, and {ref} is a reference frame located at {3;}). To keep the D&H parameters in a
general form [ =0, 8; =0, By =7, and B3 =7 — as.
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2.3 Screw Quantities

The identification of the singular poses is based upon screw quantities ( see [21], [22], [23],
and [24], for further detail). The static force relationship is given by F = [W]w, where F is
the generalized applied force (wrench), w = [ w] wy w3 ]T is the vector of wrench intensities,
and [W] is the associated reciprocal screw (ARS) matrix. As shown in [18] the ARS matrix is
equivalent to the combined Jacobian [W] = [J]*, where [J]=[B] ™' [A]. If the applied force is
given and the vector of intensities is unknown, inversion of [W] allows w to be found; however, if
[W] is singular, an arbitrary force F cannot be sustained, i.e., the device is force unconstrained.

Resolving [W] requires finding the screw coordinates of all joints of each branch wrt {ref}.
Manipulator joints can be modeled with their screw coordinates as follows [25]:

T
ref _ JrefzT. = el 2 ref 2 \T
IC $ji - {IC Zj;s (ro Trermj; X0 Zj, P, Zj;,) } (1)

where p, is the associated pitch (pL = 0 for revolute, and p, = oo for prismatic, joints), and “"Zji
rel 7

and ( *'F.j, X *'Z;,) are the direction and moment of the j* joint of the i'" branch wrt {ref},
respectively. For the 3-PRR , the following joint screws! written in matrix form per branch result:

0 1 1
rel [$1} = [ e TP PO P ] = | sin(f2, +03,) pysin(fs,) O
cos (02, +63,) pycos(bs,) O

0 1 1
el [$2} = [ rC[$12 rCI$22 rCI$32 ] = —sin (922 + 932) —P2 sin 932 0
—cos (02, +03,) —pycosbs, —lo —ly

0 1 1
iG] = [ 1§y, ISy, I$s, | = [ —sin (02, + 03, —a3) —pgsin(fs, — ag) +Ilgsinag  Izsinag
—cos (02, + 03, —a3) —pgcos(fs3, —ag) —lgcosas —lzcosas

The ARS of an actuated joint of a branch is reciprocal to all other joints in the branch except for
the actuated joint. Mathematically, two screws A = {a'; a}}" and B = {b'; bl }" are reciprocal
if their reciprocal product is zero, i.e., A® B =a-b,+a,-b = 0. The prismatic joint of each
branch is actuated, i.e., Wi, ®$;, = 0 for j #1. The reciprocal screws are then used to assemble the
ARS matrix. Notice that when w; > 0 the i** branch pushes the mobile platform, for i = 1,2, 3.

cosf3, —cosfs, —cos(f3, —as)
W] = [ Wy, W, W, | = | —sinfs,  sinfs, sin (03, — a3) (2)
0 12 sin 932 13 sin (933

As mentioned before, if ' [W] becomes singular an arbitrary force F cannot be sustained. This
occurs when its determinant is equal to zero, i.e.,

W] = lgsin(63,) (sin(fs,) cos(fs, — az) — cos(bs, ) sin(fs, — ag)) (3)
+l3 sin(03,) (cos(#s3, ) sin(fs,) — sin(fs, ) cos(fs,)) =0

2.4 Loop-Closure Equations

The relationship between the joint angles of the i® branch and the pose (x, y and ¢) of the
mobile platform is defined by the loop-closure equation that describe {ref} wrt {0}, i.e.,
x = bx; —d;sin(vy;) + p; cos(y; + 02,) + 1 cos(y; + b2, + 03,)
y = by +d; COS(’%’) + P Sin('%' + 921) + 1 Sin('%' + 92¢ + 931) (4)
¢ = ’71+92i+93i+6i

'For the planar case $;, = {L, M, N; P, Q, R}" = {0, 0, N; P, Q, 0}", therefore, for simplification, the zero
elements of $;, (L, M, and R) do not need to be shown.




In order to eliminate 03, and d;, Egs. (4) are sequentially substituted, yielding

filx; y, &, 03) = (y—byi = p;sin(¢p — 03, — 3;) — lisin(¢ — §;)) sin(;) ()
+ (x — bx; — p;cos(¢ — b3, — 3;) — li cos(¢ — 3;)) cos(v;) = 0

2.5 Force-Unconstrained Poses

There are four equations (Eq.(3) and Egs. (5), ¢ = 1,2,3) and six variables (z, y, ¢, and 03,,
for i =1,2,3). It would be desirable to eliminate all f3, and remain with an expression in terms of
the task space variables; however, this elimination cannot be performed symbolically, because there
are nonlinear terms (square roots), and their elimination requires squaring already large equations.

A more efficient way to solve this problem is to choose the “free” variables to be two of the third
joint angles, for example 03, and 63,. This allows us to compute 03, from Eq. (3), yielding two
possible solutions, #3, and #3, — 7. Both 63, solutions make the third ARS intersect the common
point of the other two ARSs. The 63, values define the orientation of links p; wrt the platform.

Now the problem is reduced to assembling the links with the arrangement of the prismatic
joints using the loop-closure equations. The numerical values of 03, are substituted in Eq. (5).
Half-angle substitution? is applied to ¢ and the loop-closure equations Eq. (5) become a function
of x, y, and t, the last being a quadratic variable. These equations are written in matrix form as

Vi Yy Wy x
Wx=|1v, ¥, ¢, ||y |=0 (6)
Vo Vo Yo 1

where the elements of [¥] are quadratic polynomials in ¢ and constants and 0 is a 3 by 1 null vector.

In order to satisfy Eq. (6), matrix [¥] has to be singular, i.e., |[¥]| = 0. Since each element
of [¥] is a quadratic polynomial in ¢, the |[¥]| leads to a 6*-order polynomial. The roots of this
polynomial represent the force-unconstrained poses of the manipulator, where ¢ is obtained from
t, and = and y are found from the first two rows of Eq. (6), i.e.,

HEEEIES
y 1/121 wQZ 1/123

Given that there are eight possible solutions of the inverse kinematics [19], an identification of
the solutions that lead to singular configurations is carried out. One pose may make two or more
solutions of the inverse kinematics singular. That is, the singular configurations of each solution of
the inverse kinematics is described by a surface in the x — y — ¢ space and whenever these surfaces
intersect two or more solutions of the inverse kinematics are singular.

The obtained position of the platform is referred to the origin of {ref}. However, it can be
transformed to a frame {cen} located at the centre of the platform and oriented as {ref}.

Example.-A numerical example of the force-unconstrained poses of the centre of the platform
of the 3-PRR manipulator is presented. The bases are arranged in a triangular form 500 mm
apart, the angle of the bases are 7, = —90°, 75 = 30°, and 3 = 150°, p; = l» = I3 = 200 mm, for ¢
= 1,2,3, and a3 = 60°. Figure 2 illustrates, for each solution of the inverse kinematics®, a surface
of force-unconstrained poses in the x — y — ¢ space. The last plot shows the combination of all
eight surfaces. Each plot shows their respective projections on the xy plane.

?Half angle substitution is defined as sin(¢) = 2¢t/(1+%%) and cos(¢) = (1—t2)/(1+1t%), wheret = tan(¢/2).
3There are up to two solutions for each branch. Each configuration is labeled depending on the length of the
prismatic joint + for longer and - for shorter.
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Figure 2: Force-Unconstrained poses of the 3-PRR manipulator

3 4-PRR MANIPULATOR

3.1 Background

The inclusion of an additional actuated branch is based on having every branch actuated by a
single actuator. For manipulators with redundant actuation, the ARS matrix is an m xn non-square
matrix? and thus taking its determinant is not possible. A solution is to find conditions that make
the determinant of all unique m xm (3 x3 for PPMs) sub-matrices equal to zero. This methodology
was also mentioned in [8] and described in [13] as the intersection of the hypersurfaces in the
m—dimensional task space forming a lower dimensional manifold. There are A = n!/(m!(n —m)!)
unique combinations of sub-matrices, i.e., [*'[W;]| = 0, for j = 1,2,...,A\.  With one degree
of redundancy, four sub-matrices exist, yielding four determinants. Nonetheless, two of these
determinants are linearly dependent on the other two; therefore, only two combinations of non-
redundant mechanisms have to be considered. In general, for every degree of redundancy one
equation, beyond the one from the original non-redundant manipulator, is not linearly dependent.

twith m < n, where m and n are referred to the number of degrees of freedom and actuated joints, respectively.



The number of equations that are required to identify the force-unconstrained configurations
of PPMs with redundant branches is the number of not linearly dependent determinants of the
sub-matrices plus the number of branches. In particular for the 4-PRR manipulator, two not
linearly dependent determinants and four branches lead to six equations in seven variables. In the
following subsections, the required equations are derived and then through an elimination technique
the singular configurations of the 4-PRR PPM are identified.

3.2 Derivation of Equations

The ARS of the redundant branch is
W, = {—cos (03, —aq), sin(03, —ay);lysin 034}T (8)

Let the non-redundant mechanisms be composed of branches 1-2-3 and 1-2-4. The ARS matrices
are assembled and their respective determinants are shown below:

For branches 1-2-3, ["'[W;]| = lssin(fs,) (sin(fs, ) cos(f3, — az) — cos(fs, ) sin(f3, — a3))
+l13 sin(03,) (cos(f3, ) sin(fs,) — sin(f3, ) cos(fs,)) =0 9)

For branches 1-2-4,

“HWs]| = lgsin(fs,) (sin(fs, ) cos(f3, — aq) — cos(03,) sin(f3, — ay))
+l4sin(03,) (cos(0s,) sin(f3,) — sin(fs, ) cos(f3,)) =0  (10)

The general loop-closure equation found in Eq. (5) is also applicable for the fourth branch.

3.3 Force-Unconstrained Poses

The force-unconstrained poses of the 4-PRR are defined as the intersection among the surfaces
of two non-redundant 3-PRR PPMs. Since, the singular poses of each 3-PRR PPM are represented
by a 20"-order polynomial [7], the force-unconstrained poses of the 4-PRR would be a 400" -order
polynomial. This prediction is based on the Bezout number, which states that the total degree of
a polynomial system is defined as the product of the degrees of all the polynomials [25].

There are six equations (|*' [W;]| = 0 and fi(x, y, ¢, 63,) =0, j = 1,2 and i = 1,2,3,4) and
seven variables (z, y, ¢, and 0s,, i = 1,2,3,4), i.e., there is one “free” variable. Let 63, be the
“free” variable and constant. Thus, a problem of six non-linear equations in six unknowns results,

fi(z,y, ») =0 Loop-Closure Equation of branch 1
fo(x, y, ¢, 03,) =0 Loop-Closure Equation of branch 2
fa(x, y, ¢, 03,) =0 Loop-Closure Equation of branch 3
fa(x, y, ¢, 03,) =0 Loop-Closure Equation of branch 4
g1(03,, 03,) =0 Determinant of submatrix composed by branches 1-2-3
92(03,, 03,) =0 Determinant of submatrix composed by branches 1-2-4
The solution of this problem requires an elimination technique, which is described as follows:
Step 1.- Apply half-angle substitution to the third joint angles, i.e., sin(fs,) = 2¢;/ (1 + ¢?)
and cos(03,) = (1 —¢?) / (14 ¢7), where ¢; = tan (63,/2). The new variables are substituted back
in their respective equations and the denominators are cleared. For further convenience, the
coefficients of the five power products of equations gi(q2, ¢3) = 0 and g2(q2, 1) = 0 are collected
(aj, for j =1,2 and k= 1,..,5) and shown in Appendix I.

91(q2, @3) = a113¢5 + a12G3¢2 + a13¢3q2 + a14q3 + a15g2 = 0 (11)
92(q2, q1) = a21q4G5 + a22q3q2 + A23qaqa + a24qs + azzq2 =0 (12)



Step 2.- Eliminate variable x by isolating it from equation fi(z, y, ¢) = 0 and substituting
it back in equations fo(z, y, ¢, g2) = 0, fa(x, y, ¢, q¢3) = 0, and fy(zx, y, ¢, q4) = 0. The new
equations, f/(y, ¢, ¢i) = 0 for i = 2, 3,4, are composed of 10 power products. The coefficients of
the power products are collected (b; for i = 2,3,4 and k = 1, ..,10) and shown in Appendix I.

F W, 0,4) = baqiy + biag; cos(¢) + bisgf sin(¢) + biaq; + bisgi cos(¢)
+bis Qi sin(qS) + bi7 COS(¢) + b;g sin(qS) + bigy + bi1o (13)

Step 3.- Eliminate variable y by isolating it from equation fy(y, ¢, g2) = 0 and substituting it
back in equations fi(y, ¢, g3) =0, and f/(y, ¢, g1) = 0. The new equations, f; (¢, g2, ¢;) = 0 for
i = 3,4, are composed of 20 power products. The coefficients of the power products are collected
(cik for i = 3,4 and k = 1,..,20) and shown in Appendix I.

fz'” (6, g2, @) = caqsq; cos(@) + ciagsq; sin(@) + cizqaqi cos(¢) + ciagsqisin(e) + cisgs cos(¢)
+eiods sin(@) + cirg3ql + cisgh + cingag cos(d) + cinogag; sin(¢)
+ci11q2 cos(9) + ciaqe sin(@) + cinzql cos(@) + ciagl sin(¢) + cisq; cos(o)
+ci16Gi SIn(@) + ¢z cos(¢) + cig sin(¢) + gl + cino (14)

Step 4 .- Eliminate variable g3 by isolating it from equation g;(g2, g3) = 0 and substituting it
back in equation f;(qﬁ, g2, q3) = 0. Similarly, eliminate variable g4 by isolating it from equation
92(q2, g1) = 0 and substituting it back in equation f4"(gz5, g2, q4) = 0. These two eliminations
are not as simple as the previous ones because the variables being eliminated are non-linear. In
order to get rid of the square roots that appear after the substitutions, the expressions have to be
squared. This leads to two new equations h;(¢, g2) =0, for j =1,2.

Step 5.- Apply half-angle substitution to ¢. Let t be the corresponding variable after the
substitution, yielding h;(t, ¢2) =0, for j =1,2. These two expressions contain 45 power products
because s is a variable of degree 8 and ¢ is a variable of degree 4. The power products are grouped
and the coefficients d., where r = 5i + k + 1, are collected.

8 4
hi(t,q2) =D ) djrast* =0 (15)
i—0 k=0
Step 6.- Assemble a 2 by 5 matrix [¥'] by sorting the powers of . This matrix is generated
with equations hi(t, g2) = 0 and ha(t, q2) = 0, and its entries are 8!"-order polynomials in gs.

(V'] t'=0 (16)

w n_ | Yu Y2 Y1z Y Y5 Pt 3 g2 .
here L= 1 ) iy iy g w%]a“dt [ 2 1]

Step 7.- Generate additional equations, such that the number of equations matches the number
of power products. Equations hi(t, g2) = 0 and hs(t, g2) = 0 are multiplied by ¢, t?, and #3. This
leads to an 8 by 8 matrix, whose entries are still 8"*-order polynomials in gs.

[ Y11 Y12 Y13 Y Y15 0 0 0 ][]
Vo1 oy o3 Yoy Wes 0 0 0 0
8 zn zm zw 514 515 8 8 ti

_ 21 V22 Vo3 Yoy Yos 2
e S R O I a7

0 0 g1 oo o3 Pou o5 0 t2
0 0 0 ¥y vYig iz Y U5 t

L O 0 0 gy w9y oz oy o5 | L 1




Step 8.- Eliminate variable ¢ by making matrix [¥] singular, i.e., making Eq. (17) valid.
Solving |[¥]| = 0 is complicated, because each entry of [¥] is an 8-order polynomial. ~The
resulting determinant will be a 64"-order polynomial. Therefore, the computation of the roots of
such a large polynomial may be susceptible to having floating point arithmetic problems. As an
alternative, the roots of |[U]| = 0 can be found as a generalized eigenvalue problem [26]. Matrix
[U] can be written as a matrix polynomial; i.e.,

(W] =) "[¥]qg (18)
=0
where each entry of [U;] corresponds to one of the coefficients dj. as in Eq. (15).
The idea of this method is to assemble a 64 by 64 matrix [K] with each matrix [¥;] of Eq. (18).

0 I 0

K= - (19)

— [Ws] ' [Wo] —[Ws] M[Wy] - —[Ws] Uy

where 0 and I are 8 by 8 null and identity matrices, respectively.
The eigenvalues of matrix [K] correspond precisely to the roots of the sixty-forth order polyno-
mial, i.e., all solutions of g2 for a given value of 03, .

Step 9.- Compute the poses of the manipulator by back substituting the numerical values of
g2. Variable t can be determined by inverting the first seven rows and columns of matrix [¥] and
multiplying the minus of the first seven elements of the last column of [¥], similar to Eq. (7).

The already known variables can be transformed to their original angle expressions by using
the half-angle substitution property, i.e., t = ¢ and g = 63,. Finally, equations fi(x, y, ¢) =0
and fa(z, y, ¢, 03,) = 0 lead to a system of linear equations, where x and y can be found.

Example.-The singular poses of a 4-PRR with the following characteristics is presented, the
bases are arranged in a square form 2 m apart, the angle of the bases are v; = 0°, v, = 90°,
v3 = 180°, and v, = 270°, p;, = lo =y = 1 m, for ¢ = 1,234, I3 = 2/\/§ m, ag = 45°, and
ay = 90°. Figure 3a illustrates the loci of the single order of force-unconstrained poses of the
platform centre in the z — y — ¢ space. Figure 3b is a projection of the curves on the xy plane.
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Figure 3: Force-Unconstrained poses of the 4-PRR manipulator



4 DISCUSSION

The importance of referring the ARS wrt an inertial reference frame allows us to find concise
expressions of the conditions that cause PPMs to be in singular configurations. It is important to
mention that the lengths of the links and the distance between bases must be scaled before solving
these problems numerically. Large numbers may cause floating point arithmetic errors.

The method used to find the roots of a sixty-forth order polynomial of the 4-PRR, the generalized
eigenvalue problem, reduces considerably computation time and makes the problem much more
stable. However, it is prone to having erroneous solutions due to defective eigenvalues. That is,
the problem of computing multiple roots can be ill-conditioned. In many cases the solution has a
multiplicity greater than one; in general, these eigenvalues come out as two identical real numbers
(multiplicity of two) but do not correspond to any solution of the problem.

5 CONCLUSION

In this research, two major achievements have been accomplished. First, an efficient solution
for identifying all singular configurations of the 3-PRR PPM was presented. In the literature,
the force-unconstrained poses of this manipulator are mathematically represented by a twentieth
order polynomial. In this paper, such configurations are obtained by selecting appropriate “free”
variables. A sixth order polynomial related to force-unconstrained configurations, providing bet-
ter computation efficiency, results. Second, a method to obtain all singular configurations of
the 4-PRR, a redundant PPM with an additional actuated branch, was presented. Despite the
mathematical difficulty of this problem, due to the non-linearity of the equations, a very effective
elimination technique was adopted. In both cases, the solutions were found symbolically allowing
implementation to any similar manipulator.
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APPENDIX I.- COEFFICIENTS OF POWER PRODUCTS

Coefficients of power products in step 1:

A] = a1 @12 @13 a4 Q15
a1 G2 Q23 G24 Q25

am = —283llj a¢74 = 283llj
aio = 2c3,lasa; + 283, lacay; aj5 = —2c3,lasa; — 283, lacay;
a;3 = _4031lj + 403112004]' - 483llQSO¢j

where s3, = sin(#3,), c3, = cos(f3, ), sa; = sin(«;), and ca; = cos(a;), for i = 1,2 and j = 3,4.

Coefficients of power products in step 2:

b11 bi2 b13 bia bis big b1z big big D110
Bl = | b1 ba2 b2z bag bas bag baz bag bag ba2io
b31 b3zo b33 b3a b3s bze b37 b3g b3g 0310

biy = sin(y; —71)

bis = py cos(y;) Sin(1, — a1)se, — (pycs, + 1) cos(y;) cos(yy — ) — (p; — Iy) cos(yy) cos(y; — )
bis = —py cos(7;) cos(7; — a1)ss, — (pycs, + 1) cos{y)sin(y, — a1) — (p; — L) cos(r) sin(y; — )
b4 = —sin ('yj) cos (y1) by; + cos (7]-) sin (y1) byr — (bx; — bay) cos (’yj) cos (1)

bijs = —2p;cos (7,) sin(y; — )

big = 2p; cos (1) cos(7; — a;)

biz = py cos(;) Sin(; — an)ss, — (prcs, + 1) cos(y;) cos(, — ax) + (p; + 1) cos(71) cos(3; — )
bis = —py cos(1;) co3(7, — a1)ss, — (pycs, + ) cos{y) sin(y; — 1) + (p; + 1) cos(y1) sin(y; — )
big = sin(y; —71)

bi,jo = —sin (7y;) cos (1) by; + cos (7;) sin (v;) by — (bx; — bay) cos () cos (71)

fore=1,2,3 and j =i+ 1.

Coefficients of power products in step 3:

C] = 1,1 €12 -+ €119 €120
€21 C22 -+ €219 €220

ci1 = —bj1b12 +bj2b11
Cio = —bj1b13+ ;3011
ci3=bj5b11
cia=bjeb11

cis =bj7b11 — bjobyo
cig = —bjob1 3+ b;jgb1,1
Ciyr = —bj1b1 4+ 0jab11

fori=1,2and j =i+ 1.

cig = bj10b1,1 — bjob14
ci9 = —bj1b1 5

ci10 = —bji1b1g

ci11 = —bjobis

Ci2 = —bjob1g

¢i,13 = —bj1b1 7+ bj2b19
ci1a = —bj1b1g +bj3b19

12

ci15 = bjsbig

ci,16 = bjeb19

cir = bjrb19 — bjobi 7
ci,18 = —bjob1 g + bjgb1g
Ci19 = —bj1b110 + bj4ab19
¢i20 = bj10b1,9 — bj9b110





