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Abstract

A dependent-screw suppression approach is proposed for the singularity analysis of 7-DOF (degree-of-

freedom) redundant manipulators. This approach is applied to the singularity analysis of the Canadarm2.

Five families of singular configurations are identified for the Canadarm2. The singular configurations

obtained are identical to those obtained using the reciprocity-based method. Unlike the results presented

previously, there are no denominators in the equations describing the singular configurations, and there

are also no intersections between any two of the five families of singular configurations described using

the equations in this paper.

Résumé

On propose une approche de suppression des visseurs dépendants pour l’analyse des singularités des ma-

nipulateurs redondants à 7 degrés de liberté. Cette approche est appliquée à l’analyse des singularités du

Canadarm2. Cinq familles de configurations singulières sont identifiées pour le Canadarm2. Les configura-

tions singulières obtenues sont identiques à celles obtenues en utilisant la méthode basée sur la réciprocité.

À la di↵érence des résultats présentés précédemment, il n’y a aucun dénominateur dans les équations

décrivant les configurations singulières, et il n’y a également aucune intersection entre les cinq familles

de configurations singulières décrites en utilisant les équations de cet article.

1 Introduction

Several 7-DOF (degree-of-freedom) redundant manipulators, such as the Canadarm21 and anthropo-
morphic arms [1, 2], have been proposed. Singularity analysis of 7-DOF redundant manipulators is an
important issue in the design and control of 7-DOF redundant manipulators and has thus received much
attention from many researchers [1–12].

In a singular (or velocity-degenerate) configuration, a redundant manipulator loses at least one DOF,
or in other words, its 6⇥7 Jacobian matrix, [J], becomes rank deficient [13]. Up to now, several approaches
have been proposed for the determination of the singular configurations of redundant manipulators:

(1) Determinant-based approach [3]. Using this approach, the singular configurations are determined
using

|[J ]T [J ]| = 0 (1)

where the superscript, T , represents the transpose of a matrix. The notation, | · |, denotes the determinant
of a matrix. However, the expression obtained is usually too complex to be used to find symbolic solutions
to the singularity analysis.

⇤Corresponding author.
1For the pictures and vedioclips of Canadarm2, please visit the websites of Canadian Space Agency, MD Robotics or

NASA.
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(2) Cofactor or sub-determinant approach [1, 6, 7]. Using this approach, the singular configurations
are determined using

8
>>><

>>>:

|[J ]1| = 0
|[J ]2| = 0
· · ·
|[J ]7| = 0

(2)

where [J ]i denote the matrix obtained from [J ] by removing its i-th column. As pointed out in [10], this
approach is di�cult to use in the singularity analysis of the Canadarm2.

(3) Decomposition approach [4–6]. This method is based on the Gram-Schmidt type decomposition
and has been used to the singularity analysis of redundant manipulators with a spherical wrist.

(4) Reciprocity-based approach [2, 7–10]. This approach is based on the fact that in a singular
configuration, at least one screw is reciprocal to all the joint screws [14]. The singular configuration of a
7-DOF manipulator can be obtained either geometrically [2] or algebraically [7–10]. The reciprocity-based
approach has been used to identify the singular configurations of several types of redundant manipulators
[7–10].

(5) The singular vector approach [11, 12]. This approach is a reformulation of the reciprocity-based
approach [8-10] using linear algebra terms instead of the reciprocal screw.

In fact, it is not easy to find a general expression of a reciprocal screw for a group of six linearly
dependent screws. For example, an expression of a reciprocal screw for a set of six linearly dependent
screws under the condition of s4 = 0 was given at row 1 of Table 3 in [10]. It can be verified that this
expression of the reciprocal screw is invalid if s6 = 0 and c5=0 since all the six elements vanish. Meanwhile,
it is noticed that an approach that does not use the concept of reciprocal screw [15] is generally more
concise than the reciprocal screw based approach [16] in revealing the geometric characteristics of the
singular configurations of a class of parallel manipulators. Inspired by the above fact, this paper aims
at simplifying the singularity analysis of 7-DOF redundant manipulators. The singularity analysis of the
Canadarm2 will be taken as an example to illustrate the proposed approach. The example problem was
partially solved in [11] using the singular vector approach and well solved in [10] using the reciprocity-
based approach.

This paper is organized as follows. In Section 1, a brief review of the current methods for the singularity
analysis of 7-DOF redundant manipulators is presented. In Section 2, a dependent-screw suppression
approach is proposed. The singular configurations of the Canadarm2 are identified in Sections 3. Finally,
conclusions are drawn.

2 A dependent-screw suppression approach

In a singular configuration, the 6⇥7 matrix of screws, [$]=[$1 $2 $3 $4 $5 $6 $7], of a 7-DOF redundant
manipulator becomes rank deficient [13]. Here, $i denote the screw of joint i. For convenience, a set of
six of the seven screws is called the basic screws. The other screw is called the redundant screw. The
submatrix corresponding to the set of basic screws is called the basic submatrix. The singularity analysis
of 7-DOF redundant manipulators can be performed using the following two steps.

Step 1 Find the rank deficiency conditions of one basic submatrix. These conditions can be obtained
using

|[$]i| = 0 (3)

where, [$]i represents a basic submatrix which is obtained from [$] by removing the screw $i.
To simplify the derivation of the singularity conditions of redundant manipulators, the six basic screws

should satisfy the following conditions: (a) they should not be inherently linearly dependent [8], (b) the
joints corresponding with the six basic screws should include three successive joints which are equivalent
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(a) Zero-displacement configuration.

No. �j�1 aj�1 dj ✓j

1 0 0 0 ✓1

2 �/2 0 a ✓2

3 ��/2 0 c ✓3

4 0 d 0 ✓4

5 0 d c ✓5

6 �/2 0 a ✓6

7 ��/2 0 0 ✓7

(b) Link parameters.

Figure 1: Kinematic representation of the Canadarm2.

to a planar or spherical joint, if any, and (c) the corresponding joints should constitute a serial kinematic
chain, if possible, under the first two conditions.

Step 2 Find the additional conditions for the rank deficiency of the screw-matrix for each rank defi-
ciency condition obtained in Step 1. Under each of the rank deficiency conditions obtained in Step 1, the
basic submatrix is rank deficient. In other words, the six basic screws are linearly dependent. For most
of the 7-DOF redundant manipulators proposed in the literature, at least one basic screw can always
be represented as a linear combination of at least one of the other basic screws. For convenience, such
a basic screw is called a dependent screw. Thus, the rank deficiency of the screw-matrix is equivalent
to the rank deficiency of the screw-matrix with the dependent screw,$k, suppressed, which is called the
suppressed matrix.

Based on the above reasoning, these additional conditions can be found by first determining the
dependent screw and then calculating the rank deficiency condition of the suppressed matrix using

|[$]k| = 0 (4)

The proposed approach will be used to perform the singularity analysis of the Canadarm2.

3 Singularity analysis of the Canadarm2

The Canadarm2 is shown schematically in Fig. 1. Its Denavit-Hartenberg parameters are shown in
Fig. 1(b), where the notations used are the ones in [10] modified by taking into consideration the symmetry
of the canadarm2.

3.1 The screw-matrix and the basic submatrix

It is noted that joints 3, 4 and 5 have parallel axes and are thus equivalent to a planar joint [Fig. 1(a)].
According to the conditions on the selection of basic screws, the joint screws of either joints 1–6 or
joints 2–7 can be selected as basic screws. Since the linear dependency of screws are coordinate-frame
independent, any coordinate-frame located on links 3, 4 or 5 can be selected to ensure the simplest
possible expressions for the joint screws.
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As in [10], the joint screws of joints 2–7 are selected as basic screws for the Canadarm2, and the frame
O5-X5Y5Z5 is chosen as the reference frame. Then, the screw-matrix and the basic submatrix for the
Canadarm2 are expressed respectively as:

[$] = [ $1 $2 $3 $4 $5 $6 $7 ]

=

2

6666666666664

s2 c345 �s345 0 0 0 0 �s6

�s2 s345 �c345 0 0 0 �1 0

c2 0 1 1 1 0 c6

(ds45 + ac345 + ds5) c2 � 2 cs2 s345 �2 cc345 ds5 + ds45 ds5 0 0 �ac6

� (�dc45 + as345 � dc5) c2 � 2 cs2 c345 2 cs345 dc5 + dc45 dc5 0 0 0

�s2 (�ds3 + a� ds34) dc34 + dc3 0 0 0 0 �as6

3

7777777777775

(5)

where si = sin ✓i, ci = cos ✓i.

[$]1 = [ $2 $3 $4 $5 $6 $7 ]

=

2

6666666666664

�s345 0 0 0 0 �s6

�c345 0 0 0 �1 0

0 1 1 1 0 c6

�2 cc345 ds5 + ds45 ds5 0 0 �ac6

2 cs345 dc5 + dc45 dc5 0 0 0

dc34 + dc3 0 0 0 0 �as6

3

7777777777775

(6)

3.2 Step 1: Find the rank deficiency condition for a basic submatrix

The rank deficiency condition [Eq. (3)] of the basic submatrix [Eq. (6)] is obtained as

d2s4s6(as345 + dc34 + dc3) = 0 (7)

This leads to the following three cases: Case 1

s4 = 0 (8)

Case 2
(

s4 6= 0
s6 = 0 (9)

Case 3
8
><

>:

s4 6= 0
s6 6= 0
as345 + dc34 + dc3 = 0

(10)

It is pointed out that Eqs. (8)–(10) cover all the solutions to Eq. (7), although they involve inequalities,
as opposed to the usual conditions found in the literature. As will be seen in Section 3.3, the form used
here will facilitate the derivation of the additional conditions for the rank deficiency of the screw-matrix.
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3.3 Step 2: Find the additional conditions for the rank deficiency of the screw-matrix

For each of the rank deficiency conditions [Eqs. (8)-(10)] of the basic submatrix, the additional conditions
for the rank deficiency of the screw-matrix can be found by first determining the dependent screw and
then calculating the rank deficiency condition of the suppressed matrix.

3.3.1 Case 1

In this case, Eq. (8) is satisfied. Substituting Eq. (8) into Eq. (6), we have

[$]1 = [ $2 $3 $4 $5 $6 $7 ]

=

2

6666666666664

�s35 c4 0 0 0 0 �s6

�c35 c4 0 0 0 �1 0

0 1 1 1 0 c6

�2 cc35 c4 ds5 + dc4 s5 ds5 0 0 �ac6

2 cs35 c4 dc5 + dc4 c5 dc5 0 0 0

dc3 c4 + dc3 0 0 0 0 �as6

3

7777777777775

(11)

From Eq. (11), we can find that $3, $4 and $5 are linearly dependent. Since $4 and $5 are linearly
independent, $3 is a dependent screw since it can always be expressed as a linear combination of $4 and
$5. Removing $3 from [$], we obtain a suppressed matrix as

[$]3 = [ $1 $2 $4 $5 $6 $7 ]

=

2

6666666666664

s2 c35 c4 �s35 c4 0 0 0 �s6

�s2 s35 c4 �c35 c4 0 0 �1 0

c2 0 1 1 0 c6

c2 dc4 s5 + c2 ac35 c4 + c2 ds5 � 2 cs2 s35 c4 �2 cc35 c4 ds5 0 0 �ac6

c2 dc4 c5 � c2 as35 c4 + c2 dc5 � 2 cs2 c35 c4 2 cs35 c4 dc5 0 0 0

�s2 (�ds3 + a� ds3 c4) dc3 c4 + dc3 0 0 0 �as6

3

7777777777775

(12)

Using Eqs. (4) and (12), we obtain

|[$]3| = | $1 $2 $4 $5 $6 $7 | = 0 (13)

The expansion of Eq. (13) gives the rank deficiency condition of the suppressed matrix as

dc4[(�c2s6ac3 + 2cs2s3s6 + s2c35ac5c6)(as35c4 + dc3c4 + dc3)
+s2(�ac35c4 + ds3c4 + ds3 � a)(�2cc3s6 + as35c5c6)] = 0 (14)

Equations (8) and (14) comprise one family of singularities of the Canadarm2 as follows
8
><

>:

s4 = 0
(�c2s6ac3 + 2cs2s3s6 + s2c35ac5c6)(as35c4 + dc3c4 + dc3)
+s2(�ac35c4 + ds3c4 + ds3 � a)(�2cc3s6 + as35c5c6) = 0

(15)
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3.3.2 Case 2

In this case, Eq. (9) is satisfied. Substituting the second equation of Eq. (9) into Eq. (11), we have

[$]1 = [ $2 $3 $4 $5 $6 $7 ]

=

2

6666666666664

�s345 0 0 0 0 0

�c345 0 0 0 �1 0

0 1 1 1 0 c6

�2 cc345 ds5 + ds45 ds5 0 0 �ac6

2 cs345 dc5 + dc45 dc5 0 0 0

dc34 + dc3 0 0 0 0 0

3

7777777777775

(16)

From Eq. (16), we can find that $3, $4, $5 and $7 are linearly dependent. Considering the first equation
of Eq. (9), $3, $4, and $5 are found to be linearly independent. Thus, $7 is a dependent screw since it
can always be expressed as a linear combination of $3, $4 and $5. Removing $7 from [$], we obtain a
suppressed matrix as

[$]7 = [ $1 $2 $3 $4 $5 $6 ]

=

2

6666666666664

s2 c345 �s345 0 0 0 0

�s2 s345 �c345 0 0 0 �1

c2 0 1 1 1 0

c2 ds45 + c2 ac345 + c2 ds5 � 2 cs2 s345 �2 cc345 ds5 + ds45 ds5 0 0

c2 dc45 � c2 as345 + c2 dc5 � 2 cs2 c345 2 cs345 dc5 + dc45 dc5 0 0

�s2 (�ds3 + a� ds34) dc34 + dc3 0 0 0 0

3

7777777777775

(17)

Using Eqs. (4) and (17), we obtain

|[$]7| = | $1 $2 $3 $4 $5 $6 | = 0 (18)

The expansion of Eq. (18) gives the rank deficiency condition of the suppressed matrix as

�d2s2 s4(as345 � dc45 � dc5) = 0 (19)

From Eqs. (9) and (19), we obtain two families of singular configurations of the Canadarm2, which are
represented respectively by the following two equations.

8
><

>:

s4 6= 0
s6 = 0
as345 � dc45 � dc5 = 0

(20)

8
><

>:

s4 6= 0
s6 = 0
s2 = 0

(21)
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3.3.3 Case 3

In this case, Eq. (10) is satisfied. Considering the first two equations in Eq. (10), we obtain

|[ $3 $4 $5 $6 $7 ](1�5):|

=

���������������

0 0 0 0 �s6

0 0 0 �1 0

1 1 1 0 c6

ds5 + ds45 ds5 0 0 �ac6

dc5 + dc45 dc5 0 0 0

���������������

= �d2s4s6 6= 0 (22)

where the subscript “(1�5):” denotes a submatrix composed of the rows 1 to 5 of a matrix. Thus, $3, $4,
$5, $6 and $7 are linearly independent, and $2 is a dependent screw since it can always be represented as
a linear combination of $3, $4, $5, $6 and $7. A suppressed matrix is then obtained by removing $2 from
[$] as

[$]2 = [ $1 $3 $4 $5 $6 $7 ]

=

2

6666666666664

s2 c345 0 0 0 0 �s6

�s2 s345 0 0 0 �1 0

c2 1 1 1 0 c6

(ds45 + ac345 + ds5) c2 � 2 cs2 s345 ds5 + ds45 ds5 0 0 �ac6

� (�dc45 + as345 � dc5) c2 � 2 cs2 c345 dc5 + dc45 dc5 0 0 0

�s2 (�ds3 + a� ds34) 0 0 0 0 �as6

3

7777777777775

(23)

Using Eqs. (4) and (23), we obtain

|[$]2| = | $1 $3 $4 $5 $6 $7 | = 0 (24)

The expansion of Eq. (24) gives the rank deficiency condition of the suppressed matrix as

s2 d2s4s6 (�ac345 + ds3 � a + ds34) = 0 (25)

Combining Eqs. (10) and (25), we obtain the last two families of singular configurations of the Canadarm2,
which are represented respectively by the following two equations.

8
>>><

>>>:

s4 6= 0
s6 6= 0
as345 + dc34 + dc3 = 0
�ac345 + ds3 � a + ds34 = 0

(26)

8
>>><

>>>:

s4 6= 0
s6 6= 0
as345 + dc34 + dc3 = 0
s2 = 0

(27)
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3.4 Summary of the singular configurations

From the above analysis, five families of singular configurations of the Canadarm2 have been identified.
These singular configurations are defined by Eqs. (15), (20), (21), (26) and (27) respectively. Unlike the
results presented in [10], there are no denominators in the equations describing the singular configurations.
In addition, there are no intersections between any two of the five families of singular configurations
described using the equations in this paper.

It can be verified that (a) the equation obtained from Eq. (26) by replacing s6 6= 0 with s6 = 0
represents a subset of the singular configurations described using Eq. (20), (b) the equation obtained
from Eq. (27) by replacing s6 6= 0 with s6 = 0 represents a subset of the singular configurations described
using Eq. (21), and (c) either the equation obtained from Eq. (20) by replacing s4 6= 0 with s4 = 0 or
the equation obtained from Eq. (21) by replacing s4 6= 0 with s4 = 0 represents a subset of the singular
configurations described using Eq. (15). Thus, all the inequalities can be removed from Eqs. (20), (21),
(26) and (27). The equations obtained in this way, together with Eq. (15), are indeed the singularity
equations presented in [10]. This demonstrates that the singular configurations for the Canadarm2
obtained in this paper are the same as those presented in [10].

4 Conclusions

A dependent-screw suppression approach has been proposed for the singularity analysis of 7-DOF re-
dundant manipulators. Singular configurations for the Canadarm2 have been identified. The singular
configurations obtained for the Canadarm2 are identical to those revealed in [10]. The characteristics of
the proposed approach are that (a) it is based on the concept of linear dependence instead of the con-
cept of reciprocity, (b) there are no denominators in the equations describing each family of the singular
configurations, (c) it is as e�cient as the reciprocity-based method, and (d) there are no intersections
between any two of the five families of singular configurations of Canadarm 2 obtained using the proposed
approach.
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and Engineering Research Council of Canada (NSERC) and of the Canada Research Chairs Program.
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