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Abstract 

The purpose of this paper is to propose a means to calculate the kinematic errors (commonly 

called motion errors) of each machine joint from the knowledge of the guideway geometric errors. 

Until now, the machine modeling has generally been based on the use of kinematic errors of 

machines for each machine joints. The proposed model establishes a closer causal relationship 

between the physical imperfections and their impact on the machine accuracy. 

By establishing the functions between the guideways geometric errors and the kinematic 

errors of the machine, a better understanding of the machine behavior and its root causes will be 

gained. The passage from kinematic to geometric errors also represents the transition from analysis 

of effects to analysis of causes. This conversion is similar to the shift from a volumetric error 

approach to a kinematic error approach which occurred a few decades ago. 

The geometric errors of the guideways are modeled as straightness errors and are represented 

as spline functions. A system of linear equations converts from geometric errors of the individual 

guideways to the kinematic error of the joint. The solution is reached through an iterative procedure.  

The approach is partially validated via numerical simulations. 



Sommaire 

L’objectif de cet article est de proposer une approche de modélisation des articulations 

prismatiques des machines à mesurer tridimensionnelles à partir des écarts géométriques des 

glissières. Ceci contraste avec l’approche usuelle dans ce domaine qui consiste à modéliser les écarts 

cinématiques articulaires (communément appelés écarts de mouvement). La méthode proposée est 

causale et permet une modélisation plus en amont du système mécanique permettant ainsi une 

avancée importante vers la machine virtuelle. 

Ce lien causal permet une plus grande compréhension du comportement de la machine et de 

ses causes. Ce passage de la modélisation d’écarts cinématiques à celle des écarts géométriques 

représente une transition de l’analyse des effets à l’analyse des causes. Un passage similaire ayant eu 

lieu il y a plus de deux décennies alors de la modélisation des écarts volumétriques à la modélisation 

des écarts cinématiques. 

Les écarts géométriques des glissières sont représentés par des écarts de rectitude selon des 

fonctions splines. Un système d’équations linéaires utilisant des transformations homogènes et 

l’hypothèse des petits angles permet le calcul des écarts cinématiques à partir des écarts 

géométriques des glissières. Une procédure itérative utilisant les transformations homogènes non 

linéarisées pour vérifier la solution linéarisée permet l’obtention d’une solution numérique 

pratiquement exacte. 

Introduction 

Major causes of kinematic errors on a coordinate measuring machine (CMM) are the form 

errors of the guideways due to manufacturing limitations [1]. In our analysis, the form errors will be 

represented as straightness errors. Yet there is no established relationship between the straightness 

errors of the guideway surfaces and the volumetric accuracy of a CMM in the literature.  It is 

anticipated that a key advantage of this approach is to allow physics based modeling of the error 



sources such as thermal and elastic effects since it then becomes possible to directly use information 

on the deformation of these structural elements.  This approach is in sharp contrast with many 

thermal modeling methods which use regression techniques to correlate measured temperatures with 

volumetric errors (positional errors at the probe attachment point). 

In a CMM the joints are constructed using a number air bearing pads gliding on nominally 

straight surfaces.  In a bridge type CMM structure as is analyzed in this study, the X-axis structure 

(the bridge) of the CMM is supported by seven different air-bearings.  The bearing surface is finite 

and so a certain amount of low pass surface defect filtering takes place.  This aspect is not 

considered here.  

The relationship between the motion of the air bearing pad and the straightness of the 

guideway surface has been analyzed previously [2]. The results indicate that the air-bearing motion 

error is closely related to the straightness error of the guideway as opposed to its waviness and 

surface finish.  

There are commercial applications of CMM error compensation which takes into account the 

guidance errors.  However these guidance errors are defined as the deviation of the carriage from a 

reference line, and the surface deviation as a factor per se is not taken into consideration [3]. 

Modelling Methodology 

A three-dimensional schematic of the bridge-type CMM of FXYZ structure to be analyzed is 

presented in Figure 1. 



 

Figure 1  Three dimensional schematic of a bridge type CMM 

More representative drawings of the machine are shown in Figure 2.  Physically, errors of seven air 

pads and of the linear scale of the machine determine the resulting motion error (which we will call 

the joint kinematic errors) of the X-axis carriage. However as a simplifying hypothesis, the lateral 

pads counterparts of lateral pads A and B are eliminated. This will be compensated during the 

calculations, finding the lateral error as e=e1-e2, where e1and e2 are individual errors of the lateral 

surfaces on which pads are moving. In Figure 2, A, B, C, D, and E indicate the pads. For the sake of 

simplicity, the surface deviations of pads A-B and C-D, which follow the same path, are taken as 

different functions. 
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 Figure 2 Front and top view of the CMM air bearing arrangement  

In our model each air bearing pad is simulated as a contact point. This assumption stems 

from the geometrical properties of the air bearing pad. As presented in Figure 3, the air pad bears its 

load through a ball joint which acts as a point constraint [4]. 
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Figure 3 Air bearing system  

Other important hypotheses in the methodology are that machine elements are rigid (rigid 

body hypothesis) and that the guideways geometric errors are small so that the small angle 

approximation can be applied later on in the analysis. 

The joint kinematic errors of the X-axis will be determined from individual geometric 

guideway errors. It will be assumed that the errors occur at the center of stiffness of the carriage, 

which may be defined as the point at which, when a force is applied to the system, no net angular 

motion results [5].To this end, we utilize a homogeneous transformation matrix to first describe the 

position of a bearing point as a function of the carriage motion error. Hence, the true position of a 

contact point may be expressed in as: 



















=



















+
+
+

1

*

1
A

A

A

AA

AA

AA

z
y
x

T
zz
yy
xx

δ
δ
δ

 ( 1) 



where T represents the homogeneous transformation matrix introduced in [6], which may also be 

expressed in the partitioned form: 
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Where the 3×3 submatrix R is a rotation matrix and the 3×1 column vector p is a translation vector. 

If we express R and p by their complete representations: 
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where c= cos, s= sin and ( ) ( ) ( )xxx zzyyxx εεεεεε === ,,

, ,

and xA,  yA  and  zA are the structural 

position coordinates (drawing values) of the machine X axis contact point A in stiffness center 

reference frame of the machine X axis, ( A A Ax y zδ δ δ ) are the contact point A position variations due 

to the guideways form errors and  ( ) ( ) ( ) ( ) ( ) ( )xx zyxxxx xzyx εεεδδδ ,,,,,  are the X-axis center of 

stiffness joint kinematic errors (motion errors) also resulting from the guideway errors.                                                  

For five air bearings and the linear actuator, a particular line from equation (1) is selected 

according to the physical influence of the contact point. Here it is assumed that contact points are on 

surfaces nominally parallel to one of the reference frame axis so that there is no need to perform 

vector projections.  In consequence, for pads A and B (see Figure 2), one has to select the second 

line, for pads C, D and E the third line, and for the linear actuator (represented by constraint F) the 

first line of the equation system.  As a result, we obtain the following system of equations which 

define the total carriage motion error: 
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Using the small angle approximation, this system may be reduced to 

xzyx
zyxz

zyxz
zyxz
yzxy
yzxy

FyFzC

ExEyE

DxDyD

CxCyC

BxBzB

AxAzA

δεεδ

δεεδ

δεεδ

δεεδ
δεεδ
δεεδ

++−=

++−=

++−=

++−=
+−=
+−=

**
**

**
**

**
**

 (4) 

which may be expressed in the matrix form 
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This may be expressed as 

J  τ  = ∆                ( 6) 

for which a solution may be found as follows: 

 τ = J-1 ∆     ( 7) 

Thus, we obtain the joint kinematic errors of the X axis carriage of the machine.  This system being 

a linearization of the phenomenon, an iterative procedure is used to progressively converge close to 

the exact solution. 



Simulation 

The proposed method is numerically validated through simulations. First geometrically distorted 

guideways are represented using spline functions as shown in Figure 4.  The coordinates of the 

contact points and of the line along which the scale error is measured are given in Table 1.  The 

point of contact method just described was used to calculate carriage motion errors at the nominal 

centre of stiffness reference frame location resulting from these geometric errors and also from the 

scale errors.  The results are shown in Figure 5. 

As may be observed from the graphs and as anticipated the modelled geometric errors of the 

guideways directly impact on the kinematic behavior of the carriage.  

Conclusion 

A novel modelling approach has been introduced for establishing the  relationship between the 

causal joint geometric errors (or guideways geometric errors) and the resulting joint kinematic errors 

of the carriage (motion errors).  This approach is one building block in the development of virtual 

machines for machine tools and coordinate measuring machines.  It should facilitate the use of 

thermal deformation as well as elastic deformation models of machine elements such as the 

guideways.  Once the motion errors are known using the proposed approach it is then a simple 

matter to propagate these joint kinematic errors to the tool or probe tip using homogenous 

transformation matrices.  The simulation so far conducted support the approach.  An experimental 

validation is now under preparation. 
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Figure 4 Simulated guideways and contact points calculated. 

Table 1 Locations of the bearing points and of the linear scale calibration (Dimensions in millimeters)  

 A B C D E F 

x axis -200 200 -200 200 0 0 

y axis -300 -300 -290 -290 300 -300 

z axis -500 -500 -480 -480 -510 -485 
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Figure 5 Joint kinematic errors (or motion errors) resulting from the guideways geometric errors. 



Acknowledgements: 

This work was made possible through an Individual Research Grant from the National Science and 

Engineering Research Council of Canada and the Auto 21 Network of Centres of Excellence of 

Canada. 

References: 

[1] Bosch, J.A., Coordinate Measuring Machines and Systems, Marcel Dekker Inc., New York, 

1995, 438 pp. 

[2] Tani, Y., Katsuki., K., ‘Development of High-Speed and High-Accuracy Straightness 

Measurement of a Granite Base of a CMM’, CIRP Annals, 1995 

[3] Herzog et al., Method and Apparatus for Determining and Correcting Guidance Errors, US 

Patent No: 4,587,622 

[4] Nakazawa, H., Principles of precision engineering, Oxford [Great Britain] : Oxford University 

Press, 1994.,267 p. 

[5] Slocum, A., Precision Machine Design, Dearborn, Mich.: Society of Manufacturing Engineers, 

c1992. , xvi, 750 p 

[6] Denavit, J., Hartenberg, R., S., A Kinematic Notation for Lower-pair Mechanisms based on 

Matrices, ASME J. of Appl. Mech., 1955, June, 215-221 pp. 




