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Abstract 

In this article a robust controller for manipulators is proposed. The proposed controller applies 

adaptive fuzzy model output as a feedforward computed torque, decentralized PID controller as a 

feedback stabilizer, and multi-layer perceptron as a learning tool. The structure of the fuzzy model 

can be built either using the numerical solution of the direct dynamics of manipulator, which is fed to 

neural network to find inverse dynamics, or by any other input-output data that represents the inverse 

dynamics of manipulator in design stage. Then, to modify the fuzzy model structure, on-line learning 

is conducted via neural network to capture the inverse dynamics and uncertainties such as unmodelled 

dynamics and disturbances. The stability and robustness of the proposed controller are established 

using Lyapunov approach. The proposed controller is suitable for real time application.    

    
1. Introduction 

 
Since robots work in place of human in many fields, it might be natural to design a robot, which has a 

controller similar to human brain with learning, thinking, calculation, and evaluation capabilities. 

Design and implementation of such a controller is one of the most challenging tasks, especially when 

parallel manipulators with flexible links are required to maneuver very quickly and accurately under 

external disturbance and model uncertainty.  In the last decade, much research effort has been devoted 

to the design of intelligent controller using fuzzy logic and neural network. Fuzzy logic provides 

human reasoning capabilities to capture uncertainties, which cannot be described by precise 

mathematical models. Neural networks offer exciting advantages such as adaptive learning, 

parallelism, fault tolerance, and generalization. Classical and modern control theory has been 

successful for systems that are well defined both in terms of deterministic and stochastic descriptions. 

In robotics, similar to many engineering applications, it is impossible or very difficult to obtain an 

accurate model of rigid or flexible manipulator to be controlled, due to the lack of detailed a priori 

information, complex dynamics, large dynamic coupling between different links, nonlinearity and 

time varying characteristics of the robot. However, robot model can at best be approximation of the 
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real robot, as a consequence modeling error exists. This is even more so when one deals with linear 

time invariant model [1, 2]. To accommodate the system uncertainty, time variation of parameters and 

disturbance, learning, thinking and classical techniques must be incorporated.   

Conventional adaptive controllers based on nonlinear control laws can achieve fine control and 

compensate the structured uncertainties or unknown parameters of manipulator dynamics. However, 

they often suffer from heavy computational burden and lack of dynamic model. As a result this 

hinders their real-time applications [3-8]. Although variable structure control strategy using sliding 

mode is an effective way to deal with uncertainties in the robotic system, the chattering phenomena 

due to switching operation will influence the accuracy of the tracking performance and trade-off 

between performance and chattering is needed [9-15]. Hence, there is a need for control strategies 

with learning, robustness and adaptive capability. In this regard, fuzzy logic and neural network have 

been proven to be very powerful techniques in the discipline of system control, especially when the 

controlled system is hard to model mathematically or when it has large uncertainties and strong 

nonlinearities. Therefore, fuzzy logic and neural networks have been widely adopted in model-free 

adaptive control of robot manipulators [16-26]. Furthermore, several hybrid techniques were applied 

to the adaptation of parameters in fuzzy or neural controllers, like genetic algorithm [27] and radial 

base function neural networks [28]. However, it turns out that only parameters adjustment will be 

insufficient in cases that they are using on-line model building method and parameter adjustment. For 

example, if the number of fuzzy rules, hidden layers and neurons is very large, real-time 

implementation will be difficult or impossible. More importantly, large number of the rules and 

hidden layers reduce the flexibility and numerical processing capability of the controller. As a result   

redundant or inefficient computation can be performed. In [29], fuzzy logic approach has been used to 

construct compact form of fuzzy model from crisp data, which can be utilized as a fuzzy controller. In 

[30], the structure of fuzzy rules was optimized by genetic algorithms.  In [31], neuro-fuzzy controller 

was utilized to determine the inverse dynamics of robot. The number of fuzzy rules and neurons in 

hidden layers can be generated and deleted automatically. In [32], adaptive fuzzy compensator has 

been applied to the control of manipulator. These methods are successful when it is not necessary to 

determine the precise structure and parameters of the fuzzy or neural controllers in advance. 

However, in these approaches controller structure construction, totally are left to online operation of 

robot and will result heavy computational burden in each control loop. Moreover, on-line structure 

building controller suffers from the lack of systematic approach, large number of fuzzy rules, and 

training time. The robustness margin is also not clear enough.     

This paper presents a new robust adaptive neural fuzzy controller (RANFC), which incorporated with 

classical PID to take advantages of classical control and neuro-fuzzy controller. The resulting 
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intelligent controller investigates the systematic off-line fuzzy model construction and on-line 

modifications of fuzzy model to guarantee well defined robustness margin and fast on-line 

adaptability.  This controller is built based on a neural network fuzzy (NNF) controller employing the 

generalized dynamic fuzzy neural networks (GD-FNN) learning algorithm [33]. The low-level 

learning and computational power of neural networks could be incorporated into the fuzzy logic 

system on the one hand and the high-level human-like thinking and reasoning of fuzzy logic systems 

could be used to build simple inverse dynamic model on the other hand. The main features of the 

proposed RANFC are summarized as follows: 

• On-line learning. On-line learning will be used to fine-tune the controller and to cope with time 

varying dynamics of manipulator.   

• Dynamic fuzzy structure. Fuzzy controller membership functions can be refined automatically 

according to their significance to the control system using numerical information via neural 

network. 

• Fast learning speed. Weights of the NN are adjusted using modified back propagation (BP) 

iteration method.     

• Fast convergence of tracking error. Manipulator joints can track the desired trajectory very 

quickly and accurately. 

• Adaptive capability. Proposed controller applies a new adaptive law to update the output of fuzzy 

controller and structure of fuzzy model, using the tracking error in the state variables in the 

presence of disturbances and unmodelled dynamics to maintain the controller performance. 

• Robustness. Asymptotic stability of the control system is established using the Lyapunov theorem 

and Barbalat’s lemma.  

This paper is organized as follows: Section 2 presents the general form of dynamic model of robot 

manipulator and its property, which will be used in the stability analysis. Section 3 introduces the 

details of proposed controller. Systematic fuzzy modeling is reviewed in Section 4. Robustness and 

global stability of the proposed controller are proven using the Lyapunov theory in Section 5. Section 

6 presents the structure of neural network part and some simulation results of a two-link serial robot. 

Section 7 presents the manipulator that will be used as a test bed. Section 8 concludes the article.    

  

2. Manipulator Dynamic Model  
 
Dynamic model plays an important role in the design of control algorithms. If it was possible to 

derive perfect dynamic model of a system, it might need no feedback control or very little control 
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effort to meet certain desired specifications. Therefore, it is necessary to establish the dynamic model 

before the control scheme is established.  

 Regardless of the method applied to derive the dynamic model, the equation of motion can be written 

in the following general form which represents the joint space dynamic model:                                                          

                                   ( , )   ( , , )  ( , )  ( , ) f dM q t q C q q t q F q t g q t T= + + + +&& & & &τ                            (1) 

                                                          ( , )  ( , , )M q t q n q q t= +&& &τ                                                        (2)                                  

where ( , , )  ( , , )  ( , )  ( , ) f dn q q t C q q t q F q t g q t T= + + +& & & & , ( )M q is an n n×  manipulator inertia 

matrix (which is symmetric positive definite), ( , )C q q& is  an n n×  matrix of centripetal and Coriolis 

terms, ( )g q  is an 1n × vector of gravitational terms, and fF is an 1n ×  vector denoting viscous and 

Coulomb friction coefficient, dT  is an 1n ×  vector arising from the unmodelled dynamics and 

external disturbances and  τ  is an 1n ×  vector of input generalized forces, which is  generated by the 

active joint. In this work, it is assumed that the robot end-effector moves freely in the environment. 

There are two notable properties of dynamic model, which are useful for the stability check, dynamic 

model parameter identification and for deriving the control algorithm [34], given as: 

• Skew-symmetry of matrix ( ( ) - 2 )M q C& . 

• Linearity in dynamic parameters, which means that equation (1) can be written in compact form 

as follows; 

                                                               ( ,  ,  )Y q q q p= & &&τ                                                                 (3) 

In the linearity equation p  is a 1×κ  vector of constant parameters (κ  number of dynamic 

parameters such as link length and mass, moment of inertia and any constant related to the dynamic 

model).Y  is an n ×κ matrix, which is a function of joint position, velocity and acceleration [34, 35]. 

 In the study of controller, it is relevant to find a solution for the inverse dynamic problem of 

manipulator. The inverse dynamic problem consists of determining the joint force/torque vectorτ  

which is needed to generate the motion specified by the joint accelerations q&& , velocity q& , and 

position q . Once a joint desired trajectory is specified in terms of position, velocity and acceleration 

(typically as a result of an inverse kinematic procedure), inverse dynamic allows computation of the 

forces/torques needed to apply to joints to follow the desired trajectory. Inverse dynamic model can 

be used in two different ways, feedforward fashion or feedback fashion. In this work, fuzzy logic IF-

THEN rules express the dynamic behavior of system. This “knowledge base” can be regarded as the 

fuzzy logic inverse dynamic model of robot that represents the interaction between the system states 

as well as the other complex phenomena such as flexibility and Coulomb friction in the robot. In this 



 5

work, inverse dynamic model in feedforward fashion is used to compensate for the nonlinearity 

effects.

 
3. The Proposed Robust Adaptive Neuro-Fuzzy Controller   
 
Figure 1 illustrates the structure of the proposed Robust Adaptive Neuro-Fuzzy Controller (RANFC), 

which consists of three parts namely, fuzzy controller, PID controller and learning algorithm. The 

fuzzy controller is connected in parallel with the PID controller to generate a control signal to 

approximate the manipulator inverse dynamics. The control law is given by:                                                                          

                                                                FL PID= +τ τ τ                                                                   (4) 

and includes a feedforward term FLτ which is the torque produced by the adaptive fuzzy logic 

controller, and PIDτ is the torque generated by the PID controller. The controller uses fuzzy model to 

calculate the join torques FLτ , which is an estimate of the actual torque. Thus, the controller is based 

on the computed torque control (computed torque method uses exact dynamic model). 

 

 
 

Figure 1 Proposed controller block diagram. 
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The robust control task is to follow a desired dq  and dq&  in the presence of system parameter 

variations and uncertainties. The tracking error - de q q=  and rate of error - de q q=& & &  are to be 

observed. Based on these definitions, the generalized error vector can be considered as follows:                                           

                                                           1 2
0

( )
t

E t e K e K edt= + + ∫&                                                     (5)     

where 1K  and 2K  are  n×n positive definite diagonal matrices. The integral of error is included in 

the generalized error to ensure zero offset error. If the dynamic model of the robot is exact, the perfect 

control torque based on the well known computed torque method can be designed as 

                                      1 2   ( , )( ) ( , , )d dM q t q K e K e n q q t= − − +&& & &τ                                             (6) 

where ( , , )  ( , , )   ( , )  ( ) f dn q q t C q q t q F q t g q T= + + +& & & & . Replacing dτ of controller byτ in 

equation (1) yields: 

                                                            1 2 0e K e K e+ + =&& &                                                                  (7) 

which implies that the tracking error will converge to zero with proper choice of 1 2and  K K [35, 36]. 

But the fact is that, the external disturbance and unmodelled dynamics represented by dT are 

unknown in practice. Therefore, to compensate for uncertainties, the dynamic structure fuzzy 

controller is proposed to generate the optimal torque FLτ to approximate the perfect control law. The 

systematic methodology of design and analysis of the proposed structure is presented by the 

following steps: 

• Development of fuzzy logic model. The main knowledge about the system is encapsulated in fuzzy   

      IF-THEN rules. This will be discussed in Section 5.  

• Proof of the stability and convergence. For the proposed structure, the stability and robust 

performance of fuzzy and PID controller by defining a new Lyapunov function and using Slotine 

and Li [38] adaptive law is presented in Section 5.   

• Learning algorithm and adaptation law. Learning process will be carried out in two phases, off-

line and on-line. In off-line learning the input-output data from nominal dynamical model 

governed by equation (1) or from CAD system (VisualNastran or other numerical solution) is 

used to construct the fuzzy model based on the systematic method reviewed in Section 4. Then 

on-line learning can pursue to capture the uncertainties by actually operating the manipulator. 

More detail will be discussed in Section 6. 
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• Designing and tuning of PID controller for each state independently. For this part, the common 

existing methods are used.   
 

4. A Review of Systematic Fuzzy Logic Modeling of Robot 

 

Generally, the inverse dynamic model of n degree-of-freedom (DOF) manipulators with m actuated 

joints and using equations (1) through (3) can be represented as    

                              ( ,  ,  ,  )      1, 2,3,...,i iF q q q p i m= =& &&τ                                                         (8) 

And more generally, for time-variant-parameter manipulators equation (3) in vector form can be 

written as follows 

                                                             ( )τ F q,q,q,t= & &&                                                                      (9)    

From the fuzzy logic point of view, the encoded knowledge of the robot dynamics can be interpreted 

by m fuzzy models. Each model expresses the variation of one joint force/torque as a result of motion 

of all joints. In what follows the systematic methodology of fuzzy model construction will be 

reviewed.  

Fuzzy modeling procedure can be formulated briefly and systematically, using three distinct steps as 

follows: 

1. Linguistic variables in place of, or, in addition to numerical variables. 

2. Simple relation between variables based on IF-THEN fuzzy rules. 

3. Formulation of complex relations by fuzzy reasoning algorithms. 

The first step in fuzzy modeling is the procedure of finding the significant input-output data. 

Available information or data can be found in the following classification of the sources. 

• Conventional mathematical models  

• Observation based on knowledge and/or experience 

• Numerical data (from excitation of system or from numerical solution of direct dynamics) 

• Image data 

• Linguistic data 

In this work, the qualitative model (linguistic model) of the system (robot) will be constructed based 

partly on the conventional mathematical model and the expert knowledge, and mainly on the 

numerical data measured by the joint sensors. 

The second step of fuzzy modeling is rule extraction, which can be proceeded by three main types of 

fuzzy modeling namely, Mamdani Fuzzy Models, Takagi-Sugenuo Fuzzy Models and Tsukamoto 

Fuzzy Models that have been widely employed in various applications including robot control. 
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However, in the most general form, the encoded knowledge of multi-input-multi-output (MIMO) 

nonlinear system can be represented by fuzzy models consisting of IF-THEN rules with multi-

antecedent and multi-consequent variables (with r antecedents, z consequent, and N  rules). 

IF a1 is Q11 AND a2 is Q12 ... AND ar  is Q1r THEN c1 is D11 AND … AND cz is D1z 

ALSO 

M                                                                                                                                                 (10) 

ALSO 

IF a1 is QN1 AND a2 is QN2 ... AND ar  is QNr  THEN c1 is DN1 AND … AND cz is DNz 

 

where a1,a2,...,ar are input variables, and c1,c2,...,cz  are output variables, Q1r Q2r,...,QNr and D1z,D12, 

...,DNz are the fuzzy sets of the universes of discourse which represent the input and output 

membership functions (MF), respectively [29]. 

Conceptually, a system with multiple independent output variables can be considered as a set of 

single output system. Consequently, the general structure of MIMO fuzzy system can also be 

considered as a collection of multi-input-single-output (MISO) fuzzy systems. Although for MISO 

fuzzy system the number of rules will be increased, modeling and inference will be more 

straightforward. That is why the literature concentrates on multi-input-single-output rules as generic 

presentation of fuzzy systems.  Using MISO system for inverse dynamic problem of robots leads to 

the following form of rules for each active joint of a manipulator:  

IF q1 is Qm11 AND q2 is Qm12 ... AND qr is Qm1r THEN mτ is Dm1 

ALSO 

M                                                                                                                                                 (11) 

ALSO 

IF q1 is QmN1 AND q2 is QmN2 ... AND qr  is QmNr THEN mτ is DmN 

where m is the number of actuated joints; q1, q2,…,qr are significant input variables for joint i 

(i=1,2,…,m) that were identified among the elements of the joint displacement, velocity and 

acceleration. mτ is the output torque of joint m; Qm1r,…,QmNr and Dm1,…,DmN are the fuzzy sets 

representing the input and output MF, respectively [39].  

The third step of fuzzy modeling is fuzzy reasoning, which is an inference procedure that derives 

conclusion from a set of fuzzy IF-THEN rule and known facts. One of the most applicable fuzzy 

reasoning, which has been widely used, is classical MAX/MIN composition method. This method 

considers the maximum of membership sets, which consists of the minimum of membership of 

antecedent part of different rules. For instance, for every similar DmN:   
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                         ( )A out m−µ τ =MAX{min{Qm11,…, Qm1r},…,min{ QmN1,…,QmNr }}                 (12) 

where ( )A out mµ τ− is the aggregated membership function of the fired rules for specific output. By 

using the concept of fuzzy partitioning of the information (fuzzy partitioning of state variable 

domain), rules and fuzzy reasoning, decision-making can be accomplished. 

The last step is defuzzification, which is the conversion of a fuzzy output value to an equivalent crisp 

value. In general there are five methods for defuzzyfying a fuzzy set, namely, centroid-of-area 

(COA), mean of maximum (MOM), smallest of maximum (SOM), largest of maximum (LOM) and 

bisector of area (BOA). One of the methods that widely have been used is the centroid-of-area 

method (COA) and can be expressed as follows:  

• Multiply the membership degrees for each output variable by the singleton value of the output set. 

• Add all of the preceding together and divide by the summation of output membership degrees. 
 

                                                  
( )

( )
m s mA out

mA out

d
COA

d
−−

−

∫
=

∫

µ τ τ τ

µ τ τ
                                                      (13) 

where s m−τ is the singleton value of output torque set, which is the output value with membership 

function one (100%) in case that there is one point with membership function one.  

The key idea of this approach is to consider the fuzzy logic model (with crisp input and output) as a 

multi-dimensional nonlinear operator with upper and lower limits. The nonlinear characteristics of 

fuzzy logic model are due to its computational structure, fuzzification, inference and defuzzification. 

Formulation has been made based on two main assumptions:  

• This approach to fuzzy logic modeling and control does not consider the internal parameters of 

system. Hence, the system model and control rules must be obtained from the input-output data, 

and to achieve this goal in the design and simulation phase, the input-output data either from 

CAD system (visualNastran) or approximate mathematical model will be fed to the neural 

network part of controller to capture an approximate inverse dynamics of the system. 

• For simplicity, the control rules will be designed for each system state independently, despite the 

state interactions, while the stability and robustness of the entire system is guaranteed. 

 
5. Stability and Robustness Analysis of Proposed Structure  

 

Before the proof of stability of the closed loop controller, rewriting some of the equations and new 

arrangements are needed. Equating equations (2) and (9) results    
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                                           ( , ) ( , , ) ( , , , )M q t q n q q t F q q q t= + =&& & & &&τ                                             (14) 

Taking derivative of ( )E t in equation (5) yields 

                                                          1 2E e K e K e= + +& && &                                                                  (15)      

By rearranging and equating 1 2K = Λ  and 2
2K = Λ  an optimum response (critically damped) for 

each error state will be obtained as follows  

                                                     
2

2

2
  ( ( 2 ))d

E e e e

q q e e
= + +Λ Λ

= − − Λ − Λ

& && &

&& && &
                                                  (16)     

 The acceleration vector  q&&  can be obtained from the system dynamics by rewriting equation (2) as 

                                                           1[ - ( , , )]q M n q q t−=&& &τ                                                            (17)    

Inserting (17) into (16) results in 

                                    1 2[ ( ( 2 - ) ( , , ))]dE M M q e e n q q t− −= − Λ Λ +& && & &τ                                        (18)   

In equation (18) the term 2( 2 ) ( , , )dM q e e n q q t− Λ − Λ +&& & &  is the system inverse dynamics with the 

input acceleration called “reference” acceleration and defined as follows  

                                                               2- 2 -r dq q e e= Λ Λ&& && &                                                           (19)   

On this basis, the desired control input can be defined as  

                                           ( , ) ( , , ) ( , , , )r rdd FM q t q n q q t q q q t= + =&& & & &&τ                                        (20)   

Because of the system uncertainty and variation, the inverse dynamic model (in this case fuzzy logic 

model) is an approximation of the real system. Hence  

                                           ˆ ˆ( , ) ( , , ) ( , , , )ˆ ˆr rM q t q n q q t F q q q t= + =&& & & &&τ                                          (21)     

where ˆ ( , , , ) ( , , , ) ( , , , )r r rF q q q t F q q q t F q q q t= + ∆& && & && & && . At this point the uncertainty F∆ is assumed to 

be bounded  

                                                      ( , , , ) ( , , , )    r rF q q q t  q q q t∆ ρ≤& && &&                                           (22) 

Therefore the control input in equation (4) will be 

                                                                    ˆd FL PID= +τ τ τ                                                           (23)             

where the control term PIDτ is the stabilizing term and based on - de q q= it can be defined as 

follows 

                                                  1 2( )
0

PID

t
K e K e K edt KE= − + + = −∫&τ                                      (24) 
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where K is a strictly positive real number which represents the contribution of the PID controller, 

and ˆFLτ is fuzzy controller output. ˆFLτ will be updated in the presence of disturbance and uncertainties 

by on-line training and membership adjustment based on the following adaptation law  

                                                                    ˆ ( , , , )r EF q q q t = −Γ& & &&                                                      (25) 

whereΓ is a symmetric positive definite matrix which defines rate of adaptation. Updating the fuzzy 

model output according to equation (25) will keep the output of fuzzy model as close as to the actual 

output, and then the PID controller can stabilize the system by little control effort. Now based on the 

established adaptation law and error vector the proof of stability theorem will be addressed. 

Stability Theorem: Consider the multi link parallel manipulator system represented by equations (1) 

and (9), if the robust control law of (4) and the adaptive law that will be derived later in this work  

are applied, asymptotic stability is guaranteed. 

Proof.  By using equations (16) and (19), the derivative of generalize error vector can be defined as 

                                                             
r

E q q= −& && &&                                               (26) 

 where 22q q e er d= − Λ − Λ&& && & . A  Lyapunov function candidate can be considered as follows 

                                             11
( )

2
T TV E ME F F−= + Γ% %                                          (27) 

Taking the derivative of Lyapunov function and using 

definition ˆ ( , , , ) ( , , , )r rF F q q q t F q q q t F= − = ∆% & && & && , results   

                                     11 ˆ
2

T T TV E ME E ME F F−= + + Γ&& & & %                                         (28) 

Inserting (26) into (28) yields  

                                           

                               11 ˆ( )
2

T T T
rV E ME E M q q F F−= + − + Γ&& & %&& &&                                    (29)  

By using system dynamic equation (1)  

 11 ˆ( ( ( , , )   ( , )  ( , ) ))
2

T T T T
f d rV E ME E C q q t q F q t g q t T E Mq F F−= + τ − + + + − + Γ&& & %& & & &&   (30) 

Replacing q& by integrating the reference acceleration (19),
r

q E q= +& & , in equation (30), yields 

1[
1 ˆ( ( , , )( ) ( , )  ( , ) )]
2

T T T T
r f d rV E ME E C q q t E q F q t g q t T E Mq F F−= + τ − + + + + − + Γ&& & %& & & &&  (31) 
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Rearranging equation (31) 

1[ )]
1 ˆ( 2 ) ( ( , , )  ( , )  ( , ) 
2

T T T
r r f dV E M C E E Mq C q q t q F q t g q t T F F−+= − + τ − + + + + Γ&& & %&& & & & (32) 

where the skew symmetry of ( - 2 )M C&  has been used to eliminate the term 
1

( - 2 )
2

TE M C E& . Then   

            1[ ) ˆ( ( , , )   ( , )  ( , ) ]T T
r r f dV E Mq C q q t q F q t g q t T F F−+= τ − + + + + Γ&& %&& & & &             (33) 

                             ( , , , ) ( , , ) ( , )  ( , ) r r r f dF q q q t Mq C q q t q F q t g q t T+= + + +& && && & & &                            (34) 

                                             1ˆ( )T TV E F F F−= − + Γ&& %τ                                          (35) 

Taking the control law from equations (23) and (24) to be  

                                              ˆ ˆFL KE F KE= − = −τ τ                                         (36) 

and inserting (36) into (35) yields 

                                          1ˆ ˆ( )T TV E F KE F F F−= − − + Γ&& %                                  (37) 

Updating the fuzzy controller output according to update law F̂ E= −Γ& , yields  

                                           1T T TV E F E KE E F−= − − ΓΓ& % %                                    (38) 

                                                 0 TV E KE= − ≤&                                                (39) 

Furthermore, from equation (27) ( ) 0 V t > is positive and from equation (39) ( ) 0 V t ≤& . These imply 

that ( ) 0 V t =&  if and only if ( ) 0E t =& , and Barbalat’s lemma [38] indicates that  V&  tends to zero if it 

is uniformly continuous. Also it is possible to show that  ( ) 0  asE t t ∞→ → . As a result, the control 

system is asymptotically stable and the tracking error will converge to zero. 

 
6. Neural Network Architecture 

 

The proposed controller learning algorithm, depicted in Figure 2, has been constructed based on the 

Multi Layer Perceptron (MLP) network and uses enhanced Back Propagation (BP) algorithm as a 

learning method. This learning algorithm was developed recently by the author for the real-time 

application and is simple and efficient, and also faster than regular BP algorithm. As shown in Figure 

2, the developed NN has three layers. The nodes in layer one are input nodes that represent numerical 

input data measured by the joint sensors, which are joint displacements, velocities and accelerations. 

Numbers of input nodes are at most 3m+1, where m is the number of actuated joints of the 

manipulator. The nodes in layer two are processing nodes and are designed based on the trial and 
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error method, which can approximate nonlinear functions in a wide range. The last layer is output 

layer and represents the joint torques. In this work, for each actuated joint of parallel manipulator 

individual NN with identical structure has been considered to capture the inverse dynamics of robot. 

To demonstrate the learning ability and fast convergence of algorithm, a two-link serial robot has 

been simulated. The inputs of joints one and two are defined as 1 6(1 cos(2 ))q t= π − π , 

2 2sin( )q t= π , respectively, and their first and second derivatives.     

 

 
 

Figure 2 Three layer feedforward Neural Network. 

 

Figure 3 represents the displacement, velocity and acceleration of joint one, and the output torque of 

this joint (desired output and NN output). As shown in Figure 3, the proposed neural network 

structure can learn up to the desired accuracy. In this analysis the nonlinear output torque with small 

number of observation of the training data can be approximated. Figure 4 represents the first 0.1 

seconds of the first joint’s torque (marked within a square in Figure 3) to show how fast neural 

network can follow the desired trajectory and approximate the inverse dynamics of the robot.  

The robustness of the proposed NN structure in the presence of the disturbances has been 

investigated. Disturbance in the form of a sine function with different frequency and amplitude has 

been applied to the joint inputs at time 0.8 seconds. Figure 5 shows the disturbed inputs of joint one 

and its output. Figure 5 demonstrates how fast and accurate the proposed NN structure can 

accommodate the disturbance. 
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Figure 3 First joint inputs and torque approximation of a two-link serial robot by NN.  
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Figure 4 Joint torque approximation for the first 0.1 second of robot by NN.  
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Figure 5 First joint inputs and torque approximation of robot by NN with disturbance. 

 

7. Simulation   

 

To demonstrate the improved performance, adaptive capability and robustness of the proposed 

controller, simulation of the controller has been conducted on the 3 DOF serial Phantom robot (model 

1.5) [40].  

The simulation was conducted in the presence of disturbance and payload change. Figures 7, 8 and 9 

demonstrate the simulation results for three actuated the joints of Phantom robot. Results show that in 

the presence of 500% change in the entries of the mass matrix at time t = 1.5 seconds and 1000% 

change in the acceleration terms (C matrix), the controller performs very well. After small chattering 

in the joint torques, the tracking error is in the order of 0.001 mm, the convergence after disturbance 

to the desired trajectory is fast, and the stability is excellent. 
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Figure 7 Simulation results for joint 1 of Phantom robot.  
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Figure 8 Simulation results for joint two of Phantom robot.   
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Figure 9 Simulation results for joint three of Phantom robot.   

 

The proposed controller will be implemented on a 4 DOF cable-actuated manipulator for 

experimental evaluation. The robot has three translational DOF and one rotational DOF. The design 

of this cable-actuated manipulator has been reported in [41]. The developed manipulator consists of a 

central rigid linkage with two actuated joints and three cables that are used to control the end effector. 

The central linkage incorporates eight revolute joints to achieve 4 DOF motion. 
 

8. Conclusion 

A combined form of robust adaptive neural fuzzy controller based on the computed torque control 

theory along with the supervisory PID controller for real time applications is proposed. The 

asymptotic stability and convergence of controller is established using the Lyapunov approach. The 

control of manipulators can be initiated with or without simple fuzzy model, which is constructed 

from the numerical solution of direct dynamics. Then, the modification of the fuzzy model can be 

accomplished using the adaptation law and on-line training with neural network algorithm developed 

in this work. 
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