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Abstract: Wire-actuated parallel robots are used for their compactness, high speed and loading capacity. 

However, establishing the required stiffness in a wire-actuated parallel manipulator could be a problem because 

of the elastic behaviour of wires. In this article, kinematic and stiffness analyses of wire-actuated parallel 

manipulators are investigated. An inverse kinematic formulation is given for wire-actuated parallel 

manipulators with a rigid branch acting on the end effector, and the stiffness matrix of the manipulators are 

formulated using the result of the inverse kinematics. Then, inverse kinematics and stiffness analysis of a 4 

degrees of freedom wire-actuated parallel manipulator is performed as a case study. 

1 Introduction 

Although the serial mechanisms preserve good obstacle avoidance characteristics and have large workspace, 

their poor load carrying capacities lead to the usage of closed loop mechanisms, which generally show better 

weight/load carrying capacities or stiffness characteristics. The stiffness of the closed loop mechanisms is 

important to investigate their loading capabilities, as well as their deflections due to interaction with their 

environment. 

The stiffness analysis relates the stiffness of the manipulator (caused by elastic components such as links, 

driving components, etc.) to the end effector stiffness. Simple linear or torsional springs can be used to model 

the stiffness of the elastic components used in the manipulator. There are various studies on stiffness analysis of 

manipulators in the literature, and most of these studies consider the actuated joints as the major source of 

stiffness. Gosselin [3] formulated the stiffness of parallel manipulators under certain assumptions, which 

resulted in a symmetric stiffness matrix. He used eigenvalue decomposition to investigate the stiffness 

properties of the parallel manipulator. Griffis and Duffy [4] formulated the stiffness of a parallel mechanism by 

taking into account the geometric deflection due to the external loading of the manipulator. They used screw 

theory to formulate the stiffness matrix, and found an asymmetric stiffness matrix. They formulated the 

stiffness of a Gough-Stewart platform type of a manipulator, which can also be used as a model of a remote 

center of compliance device. Zefran and Kumar [5] used Lie Algebra and Energy approach to formulate an 

asymmetric stiffness matrix of closed loop manipulators. They also discussed the cause of the symmetry and 

asymmetry in the stiffness matrix and concluded that they are due to the layout and geometrical constraints of 



the closed loop manipulators. Svinin et al. [6] performed a static force analysis of the general Gough-Stewart 

type manipulators. They obtained the stiffness matrix by considering the infinitesimal displacement of the 

manipulators, and related the forces and infinitesimal displacements via the stiffness matrix. 

Another factor, which affects the stiffness of the manipulators, is the internal forces, which could act 

against each other due to the constraints in the closed loop mechanisms [7]. The effects of internal forces can be 

quite significant depending on the configuration of the manipulator, e.g., if there is redundancy, or the type of 

the actuator used [8]. Yi and Freeman [9] derived a general formulation of stiffness analysis of closed loop 

manipulators. They used a dynamical analysis and considered static equilibrium by taking the acceleration 

terms as zero to obtain the stiffness matrix. They also discussed the cause of the asymmetry in the stiffness 

matrix, and concluded that the asymmetry is due to geometrical constraints of the manipulator. The stiffness 

matrix obtained can be used in stability and feedback control of closed loop manipulators. 

Wire-actuated parallel manipulators have also been considered in the literature due to their advantages of 

being lightweight and low cost. One of the main problems of using wires in manipulators is their elastic 

behaviour. Wires can be used only when they are in tension. Also, establishing the stiffness of the wires is 

another problem. In Robocrane [10], gravity was used to establish the tension in the wires; therefore the 

manipulator was able to work only in the presence of gravity forces. Landsberger and Sheridan [11] used wires 

instead of the legs in a Gough-Stewart type of a manipulator. They designed an additional telescoping rigid 

branch to maintain the tension in the wires. Kawamura et al. [12] used seven wires for a 6 degrees of freedom 

manipulator. One of the wires was redundantly used to maintain the tension in the wires. Force closure of wires 

was considered in the design of the manipulator. A control system with force feedback was employed to 

guarantee the stiffness of the manipulator.  

In this paper kinematic and stiffness of the wire-actuated closed loop manipulators with a rigid branch 

acting on the end effector are investigated. The main elastic components of the manipulators are the wires and 

the actuated joints, which are modeled as simple springs. An inverse kinematics solution of the manipulators is 

given. The principle of virtual work is employed to find the stiffness matrix of the manipulators. The stiffness 

matrix obtained is symmetric, because the asymmetric effects and the internal forces in the manipulators are 

neglected. The resultant matrix would be used in inspecting the stiffness characteristics of the manipulators. 

Stiffness mapping of a 4 degrees of freedom wire-actuated parallel manipulator is obtained to illustrate its 

stiffness characteristics. 

2 Theoretical Background 

In this section, the kinematics of wire-actuated manipulators with one rigid branch, acting on the mobile 

platform, and several actuated wires (branches) is considered. The general configuration of a parallel 

manipulator with a rigid branch and several active wires is shown in Figure 1. The wires are connected to the 

ground at points Ai and to the mobile platform at points Bi. The rigid branch consists of links and joints, where 

the joints are shown as squares in Figure 1.  

Some assumptions are made in the configuration of the wires. It is assumed that the necessary tension is 

established in the wires, and the weights of the wires are neglected so that they preserve the line geometry. As a 



result of these assumptions, the wires can be modeled as linkages with a spherical, prismatic and spherical joint 

combination [13]. 

For the kinematic analyses of the manipulator, several reference frames are defined, including the base 

reference frame (frame 0) with an origin at the centroid of the base platform, and the mobile platform frame 

(frame p) with an origin at the centroid of the mobile platform. 

The finite and differential forward and inverse kinematics of the rigid branch are investigated in Section 

2.1. Section 2.2 is related to the inverse kinematics of the wires. In Section 2.3, the inverse Jacobian matrix of 

the parallel manipulator is derived, and a brief explanation on the stiffness matrix is provided. 

 
Figure 1 Configuration of a wire actuated parallel robot with a rigid branch. 

2.1 Kinematics of the rigid branch 

Forward kinematics: For a given configuration of the rigid branch with prismatic or revolute joints, Denavit-

Hartenberg convention can be used to attach coordinate frames on the links, and to define the link and joint 

parameters. Homogeneous transformation matrices can be used to find the position and orientation of the 

mobile platform in terms of joint variables. The homogeneous transformation matrix relating frame i to i-1 can 

be written as: 



















αα
θθα−θαθ
θθαθα−θ

=−

1000
0),1(

iii

iiiiiii

iiiiiii

ii dcs
sacsccs
cassscc

A             (1) 

In equation (1), c and s represent the cosine and sine functions, θi is the rotation angle and it is the joint 

variable for a revolute joint.  The joint offset is given by di which is the joint variable for a prismatic joint, the 

twist angle is denoted by αi, and the link length is represented by ai. A(i-1,i) is the homogenous transformation 

matrix between link (i-1) and link i. The homogenous transformation matrix can be partitioned as follows: 
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where R(i-1,i) is the 3×3 rotation matrix from link i-1 to link i, and p(i-1,i) is the position of the ith coordinate frame 

with respect to (i-1)th coordinate frame. For f coordinate frames attached to the rigid branch of the robot, the 

homogenous transformation matrix between the 0th frame and the platform frame can be calculated by: 

),1()2.1()1,0(),0(),0( fffp −== AAAAA K                                     (3) 

Then the position and orientation of the mobile platform can be obtained by extracting the submatrices 

given by equation (2). 

Inverse kinematics: In the inverse kinematics of the rigid branch, for a given position and orientation of the 

mobile platform, it is desired to find the joint variables. The known position and orientation of the platform can 

be equated to the results of equation (3) and solved for the joint variables. 

Velocity analysis: The Jacobian matrix of the rigid branch, Jb, can be derived by using the position, p(i-1,i), and 

orientation, R(i-1,i), entities of equation (2). The conventional formulations for calculating the Jacobian matrix, 

defined in the literature, can be used for deriving the velocity relation. Then, 

bbqJv &=                 (4) 

where v is the mobile platform velocity (angular velocity of the platform and linear velocity of the origin of 

mobile platform frame), and qb is the vector of joint variables for the rigid branch. The inverse velocity analysis 

of the rigid branch will be as follows  

vJq 1−= bb&                 (5) 

In general not all of the joints of the rigid branch will be actuated, i.e., m out of n joints (m ≤ n) will be 

actuated.  Equations (4) and (5) include the velocities of both active and passive joints of the rigid branch.  

From equation (5) rows, which contain the actuated joint velocity variables, can be extracted and used in the 

inverse Jacobian of the parallel manipulator [14]. 

2.2 Inverse kinematic analysis of the wires 

Using loop closure equations, the inverse kinematics of the wires can be solved.  It is assumed that the wires 

remain in tension all the time. A loop closure equation can be written for the ith wire as: 

iii PBOPBAOA +=+i               (6) 

If the wire length vector is denoted as ii BAl =i , then the ith wire length vector can be calculated as: 
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P

i ,p)( 0               (7) 

The Euclidean norm of equation (7) can be taken to find the wire length.  

The velocity of wire lengths can be found by taking the time derivative of equation (7) as follows: 
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The Euclidean norm of equation (8) will give the magnitude of the rate of change of the ith wire length. 

Hence, an equation, which relates the mobile platform velocities to the magnitude of the wire velocities, can be 

found. Equation (8) will be used to obtain the Jacobian of the parallel manipulator. 

2.3 Stiffness analysis of the manipulator 

The stiffness of the parallel manipulator can be investigated using the Jacobian of the manipulator. Since the 

manipulator consists of m actuated joints on the rigid branch and n wires, the following relation can be obtained 

between the mobile platform velocity and the joint/wire velocity. 
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An infinitesimal displacement of the actuators (active joints and wires) could be related to the infinitesimal 

displacement of the mobile platform as: 

xJq ∆=∆ −1              (10) 

Using the work-energy method, the following relation can be obtained between the actuator forces/torques, 

denoted by τ, and mobile platform forces and moments, denoted by F: 

τJF T−=               (11) 

Under the assumption that there is an infinitesimal displacement of actuators, the following relation 

between the actuator forces and the displacements hold: 

qKτ a∆=               (12) 

Ka is a diagonal matrix whose element ki denote the stiffness of the ith-actuated quantity (joint or wire). 

Using equations (10) through (12), the relation between the mobile platform force (wrench) applied by its 

environment and an infinitesimal displacement of the mobile platform can be obtained: 
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where Kmp is the stiffness matrix of the manipulator, and Ka is the stiffness of the actuated joints/wires. This 

matrix will be used to map the stiffness of the manipulator to the Cartesian space.  

3. Example Manipulator 

The manipulator considered in this section has four degrees of freedom, and includes three wires and a rigid 

branch acting on the centre of the mobile platform [15]. The branch consists of a parallelogram mechanism, and 



a link for connecting the mobile platform to the parallelogram mechanism. The two joints closest to the base, 

namely the ones at the origins of coordinate frames O0 and O1, are actuated. Additionally, three wires attached 

to points Ai on the base, and points Bi on the moving links, are used to control the mobile platform, as shown in 

Figure 2. 

 

Figure 2 Example wire-actuated parallel manipulator. 

 

 
Figure 3 Zero configuration of the rigid branch of the example manipulator. 

 

A zero configuration of the rigid branch and its Denavit-Hartenberg parameters are given in Figure 3 and 

Table 1, respectively. 

 

 

 



Table 1 Denavit-Hartenberg parameters of example manipulator. 

Link θi di ai αi 

1 θ1 d1 0 π/2 

2 θ2 0 a2 0 

3 θ3 0 0 -π/2 

4 θ4 -d4 a4 0 

5 θ5 0 0 0 

 

3.1 Inverse kinematics of the rigid branch 

Using the methodology discussed in Section 2.1, the inverse kinematics of the rigid branch can be 

performed. The position of the end effector of the manipulator can be written as: 
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The orientation of the manipulator can be given as a rotation about the third axis by an angle 

541145 θ+θ+θ=θ . The inverse kinematics of the rigid branch can be obtained for a given position and 

orientation of the end effector as: 
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where [ ] T
41

T**** ]dd00[rrr )5,0(321 −−== pr , and α is the pitch angle of the end effector. Also, due to limitations 

of the manipulator, the range of θ2 is considered to be between –π/2 and π/2. Both solutions for θ4 are 

acceptable since they are in the working range. 

Completing the position analysis, the Jacobian of the rigid branch, denoted by Jb, can be found as: 
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where 4114 θθθ += . 



The inverse Jacobian matrix of the branch can be calculated by taking the inverse of Jb. Then the first two 

rows of the resultant matrix equation, which represent the relation between the actuated joint variables of the 

branch and the mobile platform velocity, can be extracted and used in formulating the Jacobian of the parallel 

manipulator. 

3.2 Kinematics of the wires 

The inverse kinematics of the wires can be performed in a similar manner as explained in Section 2.2. The loop 

closure equations for the wires can be written as: 
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2550222 BOOOBAAO0 +=+            (23) 

355333 BOOOBAAO 00 +=+            (24) 

Then, the wire length vectors in the base reference frame can be found by arranging equations (22) through (24) 

as follows 
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where 0i , 0j and 0k are the unit vectors of the base reference frame, and 15a CB= .  

Equations (25) through (27) can be used to find the wire displacements and the remaining three rows of the 

Jacobian matrix of the parallel manipulator. The velocity relations that can be used in finding the Jacobian are: 
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In the above set of equations, α&  is the angular velocity of the platform in the pitch direction, and (~) is the 

skew symmetric matrix operator for taking the cross product of two vectors. 

Then the Jacobian matrix can be written as: 
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The first two rows of J-1 is obtained by inverting equation (21) and extracting the first two rows. The last 

three rows are obtained by using the equations (28) through (30). The term tT is obtained by eliminating 1θ&  and 

4θ&  which appear in equation (28) and is found as: 
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The in  terms represent the unit vectors acting along the direction of the wires, and calculated by using 

equations (25) through (27). 

4. Stiffness Mapping 

After completing the Jacobian analysis of the system, the stiffness matrix can be calculated using the discussion 

of Section 2.3. Equations (14) and (32) can be used with the stiffness matrix of the actuated joints and wires of 

the manipulator, which is: 
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where Kθ is a diagonal matrix which is composed of the stiffness of actuated joints in the rigid branch, and Kl is 

a diagonal matrix which includes the stiffness of the wires. 

A computer simulation is performed to obtain some preliminary results of the stiffness of the manipulator. 

Regions in the workspace are considered for the simulation and eigenvalue decomposition is used to obtain the 

stiffness components of the manipulator in 0X , 0Y  and 0Z  directions, while the orientation is kept constant. The 

results are shown in Figures (4) through (6), symmetry of the manipulator can be observed from these plots. 
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Figure 4 Stiffness of the example manipulator in X0 direction. 
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Figure 5 Stiffness of the example manipulator in Y0 direction. 
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Figure 6 Stiffness of the example manipulator in Z0 direction. 

 

5. Concluding Remarks 

In this article, the kinematic modelling and stiffness analysis of wire-actuated parallel manipulators were 

considered.  

A class of wire-actuated parallel manipulators with one rigid branch and several wires was presented.  The 

kinematic analysis of this class of manipulators was performed.  The derivation of inverse Jacobian matrix and 

the stiffness analysis were discussed. The resultant formulation was applied to a 4 degrees of freedom parallel 

wire-actuated manipulator. Stiffness mapping of the manipulator was plotted in certain regions of the 

workspace, in which the symmetry of the manipulator was observed due to the formulas used for obtaining the 

stiffness matrix. 

A detailed stiffness analysis, which contains the effects of internal forces and external loading as discussed 

in the literature, is currently under investigation. 
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