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Abstract

From a practical point of view, it is of interest to design mechanisms with multiple equi-

librium configurations. In this paper, passive spring mechanisms with multiple equilibrium

configurations are proposed. The total potential energy function of the system is defined to

describe the behavior of these mechanisms. Knowing that the first derivative of this function is

zero in the equilibrium positions of the mechanisms, the latter configurations can be determined

by applying classical stability theory. Using this method, two examples are given in order to

show that these mechanisms have multiple equilibrium configurations. It is remarkable that the

springs used in the first example are practical, i.e., the undeformed length of the springs is not

equal to zero. Therefore, these results have significance in practical equilibrator design.

1 Introduction

The balancing of mechanisms has been an important research issue for several decades [1], since

balanced mechanisms have better dynamic characteristics and less vibrations caused by motion.

Static and dynamic balancing of planar linkages have been studied extensively by some scholars

[2-6]. A comprehensive review is given in [7]. For complex parallel manipulators, static balancing

has been studied in [8-14]. Conventionally, there are two approaches of static balancing, namely i)

using counterweights and ii) using springs. Both methodologies have their own merit and provide

static equilibrium throughout the entire range of motion.
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Up to now, numerous authors have discussed applications of springs to achieve statically bal-

anced machinery. The idealized springs with zero free length were first introduced by Carwardine

in 1932 [15]. Hain presented the relationship between spring and linkage parameters of a rotating

link in 1961 [16]. In 1985, based on Hain’s work, Nathan introduced a new concept called perfect

spring balancing and addressed perfect equilibration of an n link open or closed-loop revolute joint

kinematic chain [17]. Streit et al. introduced perfect equilibrator design and a general approach

for serial manipulators using springs [18-21].

According to the practical design specifications, various design objectives can be required, in-

cluding: (1) one equilibrium position (2) several equilibrium positions, (3) equilibrium at every

position, throughout the range of motion (“perfect” equilibrator design). However, all of the above

mentioned authors have studied the third case. In some cases, such as an automotive hood, “per-

fect” equilibrator design is not desirable. In that case, the potential energy can be specified as

some nonconstant function. Thus, design of mechanisms with several equilibrium positions is also

an interesting topic. Therefore, the purpose of this paper is to design mechanisms with several

equilibrium configurations using linear springs.

When springs are used, static equilibrium positions of the system can be defined as the set of

conditions for which the total potential energy in the mechanism —including gravitational energy

and the elastic energy stored in the springs— reaches an extremum for several specific configurations

of the mechanism. Mathematically, this condition is equivalent to the first derivative of the total

potential energy function being zero.

In the equilibrator designs presented by all the above mentioned authors, zero free length

springs are used. In articulated mechanical systems, the assumption that the effective undeformed

length of the springs be equal to zero does not represent any particular practical problem, since

the physical springs can extend beyond the attachment points using guiding systems or pulleys

and wires. However, in some applications it may not be possible or desirable to impose the zero

free-length condition. If this condition is not met, then perfect balancing is often not possible,

although some exceptions can be found [7]. Therefore, non-zero free-length springs will be used in

this paper.
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2 Introduction to the Equilibrium of Spring Systems

The theory is used here for finding equilibrium positions and investigating them for stability is just

the general procedure used for conservative n degree-of-freedom (DOF) mechanical system under

gravity and spring forces.

Let a general spatial n DOF mechanism with elastic springs and rigid members be composed

of nb moving bodies, one fixed link and ns elastic elements. The total potential energy of the

system, denoted V , is defined as the sum of the gravitational and elastic potential energy and can

be written as

V = geT
z

nb∑
i=1

mici +
1
2

ns∑
j=1

kj(sj − so
j)

2 (1)

where g is the magnitude of the gravitational acceleration, eT
z is an upward unit vector oriented

in the direction of gravity, mi is the mass of the ith moving body, ci is the position vector of the

center of mass of the ith moving body with respect to a fixed reference frame, kj is the stiffness of

the jth elastic element, sj is the length of the jth elastic element and so
j is its undeformed length.

For a n DOF system, let xi, (i = 1, ..., n) be the independent variables describing the configu-

ration of the system. These variables can be assembled in a vector x such that x = [x1, ..., xn]T .

The partial derivative of V with respect to vector x must be zero for equilibrium, i.e.,

∂V

∂x
= 0 (2)

The stability of the system can be determined by the eigenvalues of the Hessian matrix derived

from the second derivative of the energy function V . At a nondegenerate critical point, the number

of positive eigenvalues and the number of negative eigenvalues must total to n. If the Hessian has

p positive eigenvalues, then we say that the critical point is a Morse p-saddle. If p = n, then V has

a local minimum, namely the system is in the stable position. If p = 0, V has a local maximum.

The system is unstable. For example, consider n = 2, the conditions for equilibrium of the system

are 
∂V
∂x1

= 0

∂V
∂x2

= 0
(3)
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Figure 1: Planar one-link mechanism with a spring.

If the Hessian matrix of the system is

H =
∂2V

∂x2
=

 ∂2V
∂x2

1

∂2V
∂x1∂x2

∂2V
∂x2∂x1

∂2V
∂x2

2

 (4)

then, the conditions for the stable equilibrium of the system, which correspond to the minimum

value of V are

D1 =
∂2V

∂x2
1

> 0 and D2 = detH > 0 (5)

Otherwise, the configurations are considered to be unstable. Using the above theory we shall

analyze the equilibrium configurations of the following two mechanisms with springs.

3 Equilibrium Analysis of a Planar One-link Mechanism with a

Spring

Consider the simple planar 1-DOF mechanism shown in Fig. 1. This system consists of a single

link of mass m, rotating in a vertical plane. The center of mass of the link is located at a distance

c from the pivot and a spring is attached to the fixed link, oriented at the angle α with respect to

the Y−axis, at a distance h from the pivot, as well as to the rotating link, at a distance l from the

pivot. According to Eq. (1), the total potential energy in the system can be written as

V = mgc cos θ +
1
2
k(s− so)2 (6)
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where k is the spring stiffness, while s and so are its length and its undeformed length, respectively.

From the law of cosines, one can write

s =
√

l2 + h2 − 2lh cos(θ − α) (7)

Moreover, if the undeformed length of the spring is not equal to zero, i.e., so 6= 0 the first

derivative of the energy function V with respect to the independent variable θ is given by

dV

dθ
= −mgc sin θ + k(s− so)

ds

dθ
(8)

where
ds

dθ
=

lh sin(θ − α)
s

(9)

Then, Eq. (9) can be substituted directly into Eq. (8), which leads to the condition of the static

balancing configurations of the system, namely

−a1 sin θ + a2 sin(θ − α)− a3 sin(θ − α)
s

= 0 (10)

where

a1 = mgc (11)

a2 = khl (12)

a3 = khlso (13)

To solve Eq. (10), one can move the third term containing the square root to the right hand side

and then square both sides to eliminate the square root term. Finally, one can convert the equation

to an algebraic polynomial using the tangent-of-the-half-angle, namely sin θ = 2t
1+t2

, cos θ = 1−t2

1+t2
,

where t = tan θ
2 . After introducing the substitution and clearing the denominator, a sixth-order

polynomial in t is obtained as

b6t
6 + b5t

5 + b4t
4 + b3t

3 + b2t
2 + b1t + b0 = 0 (14)

which means that the maximum number of equilibrium configurations of the system is six. Since

the expressions of the coefficients bi, (i = 0, ..., 6) are complicated, they are not given in this paper.
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Figure 3: The curves of the functions V and dV
dθ for the planar one-link mechanism with a spring.
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3.1 Energy function curve and the equilibrium position of the one-link planar

mechanism with a spring

In order to determine the number of real equilibrium positions of the system, one can compute

numerical solutions. Substituting the following parameters: α = π/4, g = 9.8 m/s2, m = 2 kg,

k = 0.5 N/cm, c = 10 cm, l = 20 cm, h = 15 cm, so = 10 cm into Eq. (14), four real solutions for

θ can be obtained. However, only two of them satisfy the original equation, i.e., Eq. (10). They

are θ = −19.1◦ and θ = 151.7◦. Fig. 2 shows the equilibrium configurations of this mechanism

corresponding to these two solutions. To verify whether the equilibrium positions of the system

obtained above are stable, we have to examine the sign of the second derivatives of V with respect

to θ. When θ = −19.1◦, d2V
dθ2 = −228.4 < 0, while with θ = 151.7◦, d2V

dθ2 = 144.8 > 0. Hence, we

can say that this mechanism has only one stable equilibrium configuration when θ = 151.7◦ for the

above given parameters. By plotting the curves of the total potential energy function and its first

derivative with respect to θ, we can directly obtain the same results, determined by means of the

algebraic method. The three different cases k = 0.5 N/cm, k = 1 N/cm and k = 0.6533 N/cm,

i.e., a1 > a2, a1 < a2 and a1 = a2 are considered. The corresponding curves of the functions V

and dV
dθ with θ ∈ [−π π] are shown in Fig. 3. From Fig. 3a, it is clear that the function V has a

local maximum and a local minimum, within a period 2π, corresponding to each case. When V is a

minimum this system is in a stable equilibrium. When V is a maximum this system is in a unstable

equilibrium. In addition, it can be seen that the extreme value of V increases with an increase in

k. From Fig. 3b, the conditions for the equilibrium position of the system, i.e., the angle θ can

also be directly obtained. Furthermore, it can be seen that the value of θ reduces with an increase

in k.

3.2 Variation of parameter α

Since the extreme values of V or the points for which dV
dθ = 0 play a very important role in the

determination of the equilibrium configurations of the system we will now study its variation under

changes in the geometry of the mechanism for different orientations of the spring. The plots of the

values of V and dV
dθ as functions of θ for different values of parameter α are shown in Figs. 4a and

4b for given values of the other parameters in the case k = 0.5. Similarly, Figs. 4c – 4f show the
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Figure 4: Variation of V and dV
dθ with respect to θ for different values of α.
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plots of V and dV
dθ when k = 1 and k = 0.6533, respectively. From Figs. 4a, 4c and 4e, the same

trend is observed. That is, in the three cases the absolute extreme value of V increases with an

increase in α. Furthermore, except for the case in which α = 0, the energy function V has only one

local maximum and minimum value during the 2π period.

However, from Figs. 4c and 4d, it is seen that there is a special case when k = 1 and α = 0.

In this case, this mechanism has four equilibrium positions. The corresponding angles θ are 0, π,

110.2◦ and −110.2◦. When θ = ±110.2◦ this system is in stable equilibrium positions, as shown in

Fig. 5. In fact, when α = 0 Eq. (10) can be rewritten as

(−a1 + a2 −
a3

s
) sin θ = 0 (15)

which leads to two distinct cases which correspond to the different equilibrium positions of the

system. These cases are obtained with

s =
a3

(−a1 + a2)
and sin θ = 0 (16)

In the first condition of Eq. (16), since s and a3 are always positive, we impose the condition

a2 > a1, i.e., k > mgc/hl. When this condition is satisfied, i.e., k = 1, two solutions for θ

are obtained, i.e., θ = ±110.2◦ which correspond to the two stable equilibrium positions. The

second condition of Eq. (16) also leads to two solutions for θ which are 0 and π. They correspond

to the two unstable equilibrium positions in which the fixed link and moving link are collinear

along the vertical direction. Therefore, for the planar mechanism with a spring, four equilibrium

configurations are obtained if and only if α = 0 and k > mgc/hl. In other words, when the fixed

link attached to the end of the spring is located along the vertical axis and the spring is stiff enough,

the four equilibrium configurations of the system can be obtained. Otherwise, the system has only

two equilibrium configurations.

4 Equilibrium Analysis of a 2-DOF Planar Parallel Mechanism

with a Spring

In order to design a mechanism with multiple equilibrium configurations, a 2-DOF parallelogram

mechanism with one spring is proposed, as represented in Fig. 6. This five-bar mechanism consists
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Figure 6: The 2-DOF planar parallel mechanism with a spring.
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of two prismatic joints, three revolute joints and one spring. For simplicity, the angles α and β

which are defined as the angles between the first moving element li, i = 1, 2 and the X-axis are

chosen as the two input variables of the system and the undeformed length of the spring is assumed

to be zero. From the geometry of the mechanism, we have

x =
cos α sinβ

sin(α + β)
c (17)

y =
sinα sinβ

sin(α + β)
c (18)

and the y component yi of the position vector of the center of mass of the ith element is

y1 =
1
2
l1 sin α (19)

y2 =
1
2
(y + l1 sinα) (20)

y3 =
1
2
(y + l2 sinβ) (21)

y4 =
1
2
l2 sin β (22)

Since the system uses a zero free-length spring the total potential energy V can be written as

V = m1gy1 + m2gy2 + m3gy3 + m4gy4 +
1
2
ks2 (23)

where s =
√

(x− a)2 + (y − b)2.

The first partial derivatives of V with respect to α and β are

∂V

∂α
=

A3t1 cos α + At2 sin2 β + kc sinβ[(a cos β − b sinβ)A− c sinβ cos(α + β)]
A3

(24)

∂V

∂β
=

A3t3 cos β + At2 sin2 α + kc sinα[−(a cos α + b sinα)A + c sinβ]
A3

(25)

where

A = sin(α + β) (26)

t1 = (m1 + m2)gl1/2 (27)

t2 = (m2 + m3)gc/2 (28)

t3 = (m3 + m4)gl2/2 (29)

When the numerators of Eqs. (24) and (25) vanish, we can get the conditions for equilibrium

of the mechanism. Using the method of numerical solutions and choosing the following parameters:
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Figure 7: Curves of the equilibrium of the 2-DOF planar parallel mechanism with a spring.

g = 9.8 m/s2, m1 = m2 = m3 = m4 = 2 kg, k = 1 N/cm, a = 5 cm, b = 2 cm, l1 = 5 cm,

l2 = 7 cm, c = 10 cm, two curves corresponding to the above equations ∂V
∂α = 0 and ∂V

∂β = 0,

are plotted in Fig. 7. In this figure, the continuous line represents ∂V
∂α = 0 while the dashed line

represents ∂V
∂β = 0. It is clear that there are thirteen intersection points Ai, (i = 1, ..., 13), that is,

these two equations have thirteen real solutions for α and β. Using the SIMULINK software the

coordinates of these intersection points are obtained and are given in Table 1. By examining the

sign of the second derivatives of V four stable equilibrium positions, i.e., cases 2,7,9,11 are obtained.

Note that in the cases 5, 12, 13, the denominators of Eqs. (24), (25) become zero simultaneously,

i.e., A = 0. In these cases, we have y1 = y2 = y3 = y4 = y = 0 and the expression for V becomes

V =
1
2
k(x− a)2 (30)

It is obvious that V has a minimum value when x = a and the mechanism is in the stable equi-

librium position since ∂V 2

∂2x
= k > 0. Fig. 8 illustrate these equilibrium positions of the mechanism.

Therefore, this mechanism has seven stable equilibrium positions. In this example, since an ideal

spring is used and the angles α and β are judiciously selected as the input variables, the complexity

of the equilibrium problem of the mechanism reduced drastically and the number of the equilibrium

positions increased to thirteen.
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Figure 8: Equilibrium positions of the mechanism in seven cases.
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Table 1: Equilibrium positions of the mechanism

Coordinates of Ai (rad) Derivatives of V Equilibrium Status

A1 (0.9881, 2.72) D1 > 0; D2 < 0 nonstable equilibrium

A2 (1.784, 1.95) D1 > 0; D2 > 0 stable equilibrium

A3 (2.723, 0.9237) D1 > 0; D2 < 0 nonstable equilibrium

A4 (2.073, 2.398) D1 < 0; D2 < 0 nonstable equilibrium

A5 (3.142, 3.142) singular formula stable equilibrium

A6 (6.133, 0.4497) D1 > 0; D2 < 0 nonstable equilibrium

A7 (4.795, 2.071) D1 > 0; D2 > 0 stable equilibrium

A8 (3.997, 3.672) D1 > 0; D2 < 0 nonstable equilibrium

A9 (2.018, 4.831) D1 > 0; D2 > 0 stable equilibrium

A10 (0.32, 6.205) D1 > 0; D2 < 0 nonstable equilibrium

A11 (4.995, 4.96) D1 > 0; D2 > 0 stable equilibrium

A12 (0, 3.142) singular formula stable equilibrium

A13 (3.142, 0) singular formula stable equilibrium

5 Conclusion

In this paper, the equilibrium configurations of two spring mechanisms have been studied. The

spring used in the first mechanism has non-zero free-length. This is different from previous works

and has more practical relevance. However, in the last example, i.e., the 2-DOF planar parallel

mechanism with prismatic actuators, an ideal spring has been used in order to simplify the equilib-

rium problem. For each spring mechanism, the conditions under which the system is in equilibrium

have been obtained by using classical stability theory. In addition, the plots of the total potential

energy and its first derivative functions have been used to illustrate the equilibrium configurations

of the mechanism. Finally, by means of a numerical method, we have concluded that the planar

1-DOF simple mechanism has two equilibrium positions in which only one is stable. For the planar

2-DOF parallel mechanism, since an ideal spring is used thirteen equilibrium positions are obtained

in which seven are stable. These results have significance in practical equilibrator design.
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