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1 Introduction

The kinematics of flexible beam is a fundamental part
in modeling flexible manipulators and has raised great
interest in the past twenty years. To describe link
deformation, most of researches took the link’s deflec-
tions as the deformation coordinates [1, 2]. This ap-
proach has the advantages of intuitive modeling proce-
dure since it is coupled with the use of natural coordi-
nates. However, the problem raises when we perform
the real-time simulation and control since it is difficult
to detect the link deflection using conventional mea-
surement systems.

Rather than link deflections, one can use the lo-
cal curvatures as the deformation coordinates [3]. The
link deformation in this approach is described in terms
of local curvatures and related to a floating frame at-
tached to the flexible link. This approach yields a
small number of equations and is more effective for
real-time simulation and control purposes since it is
easily interfaced with on-line strain measurements [4].

In this paper, we develop a kinematic model of a
flexible beam using local curvatures as the deformation
coordinates. First we define the local frames and make
basic assumptions. Then we consider the orientation
and position variations of the local frame. At the end
we give the endpoint position and orientation in terms
of local curvatures.

2 Flexible-Link Kinematics

The kinematic model of a manipulator implies finding
the relationships between the various reference frames
attached to the manipulator. These relationships are
completely specified by the rotation matrix (or vector)
and position vector. The kinematic model of a flexible
link is constructed similarly to the robotic manipula-
tor. To describe position and orientation of the flexible
link, we divide the flexible link into n sections. Each
section has the same length ∆s in its neutral axis. A
local frame is assigned to each section and represents
the position and orientation of the section. The origin
of the local frame is located at the left point of the

neutral axis of the section with its x axis tangent to
the neutral axis. All the local frames have the same
orientation when the link undergoes no deformation.
In order to represent the endpoint, two frames are as-
signed to the last section, one has its origin at the left
point of neutral axis and another has its origin at right
point of the neutral axis.

C0

Ci

CnCi+1

dri

drfi

pi
pi+1

ds
L

s

rfi

ri

j0

ji+1

jn

ji

k0

ki
ki+1

kn

i0

ii
ii+1

in

Figure 1: Flexible Link and Its Frames

Fig. 1 shows the flexible beam with the four refer-
ence frames that are of interest. Specifically, we want
to derive the relation between the base frame {C0} and
the endpoint frame {Cn}. To build the model, we also
make the following assumptions:

1. The link is considered as an Euler-Bernoulli beam,
implying that the beam sections stay in plane and
perpendicular to the neutral axis.

2. The deformations are kept within the elastic limit
of the beam material and there is no permanent
deformation.

3. The neutral axis is non-extensible. Hence, the
longitudinal deformation is ignored.

4. The link has a circular cross-section so no wrap-
ping occurs.

To derive the model, we first consider the orientation
variations of the frames {Ci}. We assume that the
time is fixed and consider only the variation about
space variable. Realizing that as n → ∞, the arc



length ∆s → ds, the orientation variations of the
frame {Ci} can be expressed as

iδθ =
i∂θ

∂s
ds = iκds (1)

where the leading superscript i indicates that the
quantity is defined in frame {Ci} and iκ represents
the local curvature vector and is defined by

iκ = lim
s→0
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∆s
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Eq. 1 gives the orientation variation defined in frame
{Ci}. In many cases, we need to express the orien-
tation in the base frame {C0}. This can be obtained
through the mapping of the frame {Ci} to the frame
{C0} and the orientation variation in frame {C0} is
given by

0δθ = 0
iR

iκds (3)

where 0
iR represents the rotation matrix of the frame

{Ci} relative to base frame {C0}.
The same kind of relation exists between the rota-

tion matrix 0
iR and iκ as between the rotation matrix

and angular velocity vector. This relation leads to the
following differential equation [3]:

d 0
iR

ds
= 0

iR
iκ̃ (4)

The tilde symbol in iκ̃ indicates that iκ̃ is the skew-
symmetric matrix formed with the elements of iκ.

The rotation matrix can now be found by solving
the differential of Eq. 4. Piedbœuf [3] has proposed
a simple approach to solve this differential equation
by separating the rotation matrix into different order
terms. Now we directly use the result presented by
Piedbœuf. To simplify notation, the following defini-
tions are used:

v =
∫ s

0

∫ ξ

0

iκzdηdξ w = −
∫ s

0

∫ ξ

0

iκydηdξ α =
∫ s

0

iκxdξ

(5)
The rotation matrix from frame {Ci} to {C0} is

i
0R =


 1− 1

2 (v′2+w′2) −v′−
∫ s

0
α′w′dξ −w′+

∫ s

0
α′v′dξ

v′−
∫

s

0
αw′′dξ 1− 1

2 (v′2+α2) −α−
∫

s

0
v′w′′dξ

w′+
∫ s

0
αv′′dξ α−

∫ s

0
v′′w′dξ 1− 1

2 (w′2+α2)




(6)
The rotation angles of {Ci} relative to the base of the
link can now be determined by integrating Eq. 3 and
the resulting rotation vector is expressed as

θ =


 θx

θy

θz


 =


 α − ∫ s

0 w′v′′dξ +
∫ s

0 v′w′′dξ
−w′ +

∫ s

0
v′α′dξ − ∫ s

0
αv′′dξ

v′ − ∫ s

0 αw′′dξ +
∫ s

0 w′α′dξ


 (7)

To obtain the position vector relative to the base of
the link, we consider the position variation in Fig. 1
and have

0δrfi =0
iR

idrfi =0
iR


 1

0
0


 ds (8)

Using the above equation and substituting the rotation
matrix given in Eq. 6, the endpoint position vector is
obtained by integration of the variation 0δrfi

r =


 rx

ry

rz


 =




s − 1
2

∫ s

0
(v′2 + w′2)dξ

v − ∫ s

0

∫ ξ

0 w′′αdηdξ

w +
∫ s

0

∫ ξ

0 v′′αdηdξ


 (9)

where s is the arc length of the neutral axis from frame
{C0} to frame {Ci}.

Eq. 7 and Eq. 9 give the orientation and position of
the frame {Ci}. The orientation and position of the
endpoint of the flexible link can be obtained by simply
replacing the s with L, the length of the flexible link
in Eq. 7 and Eq. 9 respectively.

3 Conclusion

We have developed the kinematic model of a flexible
link that uses the local curvatures as the deforma-
tion coordinates. This model is more suitable for the
real-time simulations since the local curvatures can be
obtained using the on-line strain measurements. As
long as the curvatures are detected the endpoint po-
sition and orientation can be easily determined using
the forward kinematics, which is similar to the rigid
manipulator.
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