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1. INTRODUCTION

Over the past two decades, a number of approaches have
been developed for systematically formulating the equations
of motion for multibody systems. Principles of analytical
and vectorial mechanics have been combined with topolog-
ical representations, so that the dynamics of a wide range
of mechanical systems can be automatically and efficiently
analyzed [1].

Several authors have recently proposed extensions to the
Principle of Virtual Work (and/or Lagrange’s Equations) so
that electrical components can be included in a model of a
“mechatronic” system [2-4]. In these papers, the mecha-
tronic system consists of rigid multibody sub-systems and
electrical networks of analog components (resistors, capac-
itors, etc). Although linear graph theory is used to gener-
ate Kirchoff’s laws for the electrical sub-systems, it is mis-
perceived as being inefficient [2] and is dismissed as a uni-
fied modelling theory.

In fact, linear graph theory provides a natural represen-
tation of multi-disciplinary problems and, when combined
with principles of mechanics, results in efficient models for
electro-mechanical multibody systems. The application of
graph theory to electrical networks has long been estab-
lished [5] and, more recently, graph theory has been com-
bined with principles of vectorial [6] and analytical mechan-
ics [7] to obtain systematic formulations for rigid and flex-
ible multibody systems. The extension of these methods to
electro-mechanical systems is natural and straight-forward.
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Figure 1. Two-Link Robot Driven by DC Motors

2. SYSTEM MODELLING

To demonstrate this, consider the example in Figure 1 in
which a two-link robot arm is being driven by two DC-
motors powered by voltage sources V1 and V2. The topology
of this electro-mechanical system is encapsulated by the lin-
ear graph representation shown in Figure 2.

In contrast with other representations, e.g. bond graphs,
the linear graph is relatively simple and bears a striking re-
semblance to the physical system. This is emphasized by
overlaying the graph with the links and motors in dashed
lines. The edges of the graph correspond directly to physical
components: J1 and J2 are the two revolute joints, r3–r6
represent the location of these joints relative to body-fixed
reference frames, M7 and M8 are the two motors, and V 1
and V 2 are the voltage sources.
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Figure 2. Linear Graph of Two-Link robot

Note that the electro-mechanical transducers, the DC-
motors, are represented by two edges — one in the mechan-
ical system and one in the electrical network. The dynamic
equations for the two sub-systems are coupled by the con-
stitutive equations for the motors:

Vi = Ki
_�i + RiIi + Li

_Ii (1)

Ti = Bi
_�i + Ji��i � CiIi (2)

where Vi and Ii are the voltage across and current through
motor Mi (i = 7; 8), Ti and _�i are the motor torque and
speed, Ri and Li are the armature resistance and inductance,
Ki and Ci are the voltage and torque constants, and Bi and
Ji are the damping coefficient and inertia of the motor shaft.



Using graph-theoretic topological equations and princi-
ples of mechanics, the dynamic equations for the mechan-
ical sub-system can be systematically formulated in abso-
lute coordinates, joint coordinates, or some combination of
these and other coordinates [6]. Furthermore, the mechan-
ical equations can be expressed in either recursive or non-
recursive formats. For this example, the dynamic equations
are automatically generated in terms of the joint coordinates
�1 and �2, using symbolic Maple routines [7] that exploit the
topological equations to reduce the number of variables and
equations, and virtual work to eliminate non-working joint
reactions.

These Maple routines have been extended to include
models of electrical networks and a number of electro-
mechanical transducers. A graph-theoretic approach again
allows some freedom in selecting the system variables; the
electrical sub-system equations are automatically formu-
lated in currents or voltages, as desired by the user.

Assuming the links to be rigid in the robot example, our
dynamic formulation produces two symbolic second-order
differential equations for the multibody sub-system:
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Had the links been modelled as elastic beams, additional
equations would be generated for the elastic coordinates,
which would also appear in the mass matrix [M ] and gen-
eralized forces fQg. Selecting currents as the variables for
this problem, two first-order differential equations are ob-
tained for the electrical sub-network:�
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Thus, a minimal number of system equations (3-4) is auto-
matically generated by the graph-theoretic formulation and
symbolic implementation. Although the electrical networks
in this example are relatively trivial, networks of any com-
plexity can be efficiently treated using graph theory.

With the equations expressed in symbolic form, it is of-
ten possible to find closed-form solutions for the generalized
inverse dynamics problem. In this case, given desired joint
trajectories of �1 = �2 = �t=8, i.e. both links rotate through
90 degrees in 4 seconds, one can solve (3-4) to get analytical
expressions for the required motor currents:
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This solution can be verified by a forward dynamic sim-
ulation in which the motor input voltages are regulated by
a PD-controller to respond to errors in the joint trajectories.
For this case, a numerical integration of equations (3-4) re-
sults in the motor currents shown in solid line in Figure 3.
As expected, they oscillate about the analytical solutions (5-
6) shown in dotted lines.
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Figure 3. Motor Currents Required for Given Joint Trajectories

3. CONCLUSIONS

In summary, a unified and efficient modelling methodol-
ogy for electro-mechanical multibody systems has been ob-
tained by combining linear graph theory with principles of
mechanics. From a single graph representation, a relatively
small number of system equations is generated in a methodi-
cal manner that is well-suited for computer implementation.
It is also worth noting that a graph-theoretic approach is not
restricted to analog components, in contrast to approaches
based solely on virtual work [2-4]. Thus, components of a
discrete-time nature can be readily included in a model of
a mechatronic system containing digital controllers; this ap-
pears to be a promising area for future research.
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