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Abstract 
There are a variety of methods for generating center-point 
and circle-point circles for the 3-position, and Burmester 
curves for the 4-position and 5-position planar motion 
generation problem. Dyads are synthesized based on these 
solution sets. However, in general it is difficult or 
impossible to generalize these methods to 3D mechanisms. 
This paper begins by briefly reviewing the geometric 
constructions used in classical Burmester theory. Then, it 
presents a method using a scalar field to find the center-
point and circle-point circles by finding the points where 
these fields are equal, and shows similarities with the 
graphical superposition methods. The developed method 
could be extended to 3D since it does not use poles or other 
strict 2D entities (the 3D analysis is beyond the scope of 
this paper). The 2D solution for 4-bar linkages with 
revolute joints will be presented to support the developed 
procedure. 

1. Introduction 
Solution methods for motion generation problems in four 
bar linkages have been studied for some time beginning 
with the works of Burmester over a century ago [1]. The 
general nomenclature used is shown in figure 1.  

 
Figure 1: Nomenclature for links in two positions 

The type of solution depends on the number of input 
precision positions. In general, for 3 positions a set of 
circles, known as center-point and circle-point circles, show 
the solution. For 4 positions, the solutions lie on a set of 
Burmester curves. For 5 positions, if a solution exists, the 
solutions are a finite set of points. Using a purely graphical 
method, known as the superposition method, one could 
solve 4- and 5-position problems by first solving for the 
center-point and circle-point circles for two sets of 3 
positions, say for positions 1-2-3 and 1-2-4. These two 
solutions can yield a solution to the 4-position problem by 
finding the intersections of the circles and generating a 
Burmester curve through the intersections. Similarly, the 

intersections of two 4-position problems can yield a finite 
set of solution points. The superposition method is purely 
graphical, and uses the poles and Euclid's chord angle 
principle to generate the circles and the Burmester curves 
[2]. Using the poles and other geometric entities, one can 
sketch the Burmester curve for the 4-position problem [3]. 
Similar methods exist using complex number theory and 
other mathematical tools [4]. Graphical solutions generated 
using a CAD package are shown in figures 2 and 3. 

 
Figure 2: Center-Point-Circles 

 
Figure 3: Center-Point-Circles and Burmester curve 

generated graphically with a CAD package 

2. The Scalar Field - ββββ 
This section will show that a common parameter used in 
mechanism synthesis β could be viewed as a scalar 
function. This gradient approach was first developed by one 
of the authors (Adams) [5, 6]. However, the similarities 
between the gradient approach method and the graphical 
superposition were not discussed. Later, gradient and field 
theory in the study of Burmester curves were used in [7]. It 
is important to note that the different center-point-circles 
for a given 3-position problem will give a different angle β, 
that the link moves through from position 1 to position 2. 
For example, if the center-point-circle that was generated 
using Euclid's chord angle principle and β=30o was used to 
specify the ground point, then the link (usually a crank) will 
rotate 30o from point 1 to point 2. Figure 4 shows a circle 
drawn through the 3 positions of a point. 

One can solve for the position of the circles given the 3 
positions of the point and the displacement matrices by 
solving the vector equations 

 01 =−−− crcri  (1) 
for c, and j = 2, 3. According to figure 4 



 1212 rrL −=  (2) 
and 

 112 /)2/()2/sin( RL=β  (3) 
where R1 can be found from the center to any of the 
positions of the point. 

 

Figure 4: Point in 3 positions, center of circle, and β 

Thus, the input variable is the point picked, and the 
equations for c, L12, and β all vary with the input point. 
Using these equations, one can use a symbolic processor 
such as MathematicaTM to solve analytically and plot β for 
the given 3 positions. These plots can then be superimposed 
similar to the graphical superposition method to provide the 
Burmester curve for the 4-position problem as shown in 
Figure 4. Figure 5 shows the center-point-circles, and 
Figure 6 the superimposed 3-position problems giving the 
Burmester curve. Reference to figure 6, the gradients are 
perpendicular to the equi-potential circles, the arrow 
indicates an intersection of Burmester curve with center-
point-circles. Also, the scale in figure 6 is skewed to clarify 
the intersection. 

 
Figure 5: Center-point-circles and scalar field gradients. 

Figure 6: Burmester curve by superposition of  
two scalar fields. 

 

3. Conclusions: 
One must note some important properties of β. First it is a 
continuous function in 2D space. It is also differentiable in 
space. Thus, it is similar to a potential function such as 
those used in fluid mechanics. Thus, the center-point and 
circle-point circles are analogous to equi-potential curves. 
The superposition of two such scalar functions for positions 
1-2-3, and 1-2-4, gives the Burmester curve for positions 1-
2-3-4. Therefore, along the Burmester curve β1-2-3 = β1-2-4. 
Thus, β can be thought of as a unique scalar function of the 
mechanism problem. Given the displacement matrices and 
equations 1-3, one can solve for the scalar function for two 
sets of 3 positions. The Burmester curve is obtained by 
finding the equality points at the superposition of the two 
scalar functions. Also, this approach does no require strict 
2D entities, such as poles, to generate these curves. Thus it 
would be possible to generalize this method to 3D. This is 
currently an area that we are working on. 
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