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1. INTRODUCTION

In 1988 Clavel introduced a three degree of free-
dom(dof), three identical legged manipulator he called
“Delta”. Its end effector(EE) or “foot” executes pure
spatial translation.

Description

The fixed frame(FF) or “pelvis” supports three actu-
ated revolute(R) jointed “hips”. These R-axes form
an equilateral planar triangle. The “knee” end of each
“thigh” supports another R-joint whose axis is parallel
to the one at the hip. The foot also supports three R-
joints whose axes form another triangle which is similar
to and maintains the same orientation as the one on FF.
The EE triangle R-axes are held parallel to those on FF
because the “shin” is a parallelogram four bar linkage
whose R-axes are all perpendicular to the hip, knee and
“ankle” R-axes. One pair of linkage R-axes intersects
the knee R-axis, the other intersects the ankle R-axis.

Kinematic Geometry

When a thigh angle is set by the actuator, the R-axis
of the ankle, if disconnected from EE, would be free
to move in the parallel line bundle of the hip R-axis.
Note also the three points D;, E; C;, i = 1,2,3, at
hip, knee and ankle of each leg as shown in Fig. 1. D;
is the midpoint of a FF R-joint axis triangle side. E;
is the point on a knee R-joint axis midway between the
parallel axis R-joint pair of the four bar while C; is
midway on the opposite link, coincident with an EE R-
joint axis triangle side. If disconnected from the foot,
C; moves on the sphere centred on F;. Similarly, if EE
were fixed and E; were freed at the knee then E; moves
on one centred on Cj.

Rationale

Why rehash old research? “Delta” is mentioned in a
recent book by Angeles[1]. We found the elegant sym-
metry of this robot quite compelling. Inverse kinemat-
ics of “Delta” was treated by Pierrot[2]. His closure
equation approach is simple but his direct problem was
based on three of these quadratic equations which re-
quire numerical solution. Hervé[3] designed a similar
translational robot, using prismatic rather than revo-
lute actuation. It has screw actuated P-jointed hips.
Its inverse kinematic analysis was done using the no-
tion of intersecting Schonflies displacement subgoups
so as to explain the liason of groups. The purpose of
this article is to provide a clear kinematic analysis, use-
ful in programming these 3-legged robots, based on a
line and sphere intersection model.

2. ANALYSIS

Consider the inverse and direct kinematics via geomet-
ric constructions. Computation is based on similar, but
not quite identical, geometry.

Inverse Kinematic Construction

Fig. 1 shows a top view of the two triangular platforms.
The points, D;, E;, C;, are clearly visible. The centre of
EE is displaced by (x,y, z) from origin O at the centre
of FF. Note the design constants. e is the side length
of EE, f the side of FF, r, the distance C;E; and ry
the distance D;E;. A sphere, radius r., centred on Cj
gives the locus of E;. A second constraint is imposed
by the circular trajectory of E; at radius ry from centre
D;. The plane of this circle cuts the sphere. This small
circle appears in auxiliary views. The other solid arc is
the circle centred on D;. The intersection of the arcs
yield FE;, the solution. The desired actuated R-joint
angles can be measured as 6;.

Inverse Kinematic Computation

Here, a line will be intersected with the sphere centred
on D. The homogeneous coordinates E{w : z : y : 2z}
of a point on it are

(zqw — )% + (yqw — y)? — 2% — rfw2 =0 (1)

Which line? The one through the two desired solutions
for E, obtained by intersecting the plane of a thigh cir-
cle centred on D with the plane of a circle produced by
the intersection of the sphere given by Eq. 1 and one of
radius r. centred on C. The homogeneous coordinates
of the three vertical thigh planes, m7{W, : X, : Y : Z;}
on O can be written by inspection.

7{0:1:0:0}, m{0:1:—v3:0}, m3{0:1:v3:0}

Coordinates of the plane of the circle of intersection
between the spheres centred on C' and D are the co-
efficients of the linear equation which is the difference
between the two sphere equations. Its plane coordi-
nates are {W; : X; : Y; : Z;}. Explicitly, a thigh and
shin sphere intersection circle plane has coordinates

{(rf—r}tai—altyz—yi—22)/2 : (we—2a) : (yo—ya) : 2c}

The next step is to compute Pliicker coordinates of the
line.

We Xo Yo Z
I/I}T XZT Y7'T ZTr = {Po1 : Po2 : Po3 : P23 : P31 : pia}

The point-on-line relationship is

0 D23 D31 D12
—p3 0 Po3  —DPo2
—P31  —Pos3 0 Po1
—p12  Poz  —Po1 0

(2)
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The second and third lines of Eq. 2 are substituted into
Eq. 1 to produce Eq. 3, a quadratic in z = z,, as needed
to find 6 = sin~" (2. /).



(R? 4+ 8?)22 — 2(RT — SU) + Rzq + Syq + za)wz
+[(T + 2a)* + (U —ya)* + 25 — r3Jw® =0
R = po1/po3, S = po2/pos, T = p31/po3, U = pa3/pos
(3)
Computational expense is similar to that of Pierrot’s[2]
solution but no rotation matrix is necessary.

Direct Kinematic Construction

Now consider Fig. 2. Here the three angles 6; are given
instead of the position of the EE centre point, shown
as O', which must be determined. The solution key
is to locate points E; the centres of spheres, radius
re. Their intersections produce two poses. The con-
structive solution is shown in a second auxiliary view
where the circle of intersection on spheres centered on
E| and E} defines a plane which sections the sphere
on E; on a second coplanar circle. The intersections
of the two circles are obtained here by inspection and
projected to the first auxiliary view which shows the
FF plane in edge or line view. The lower point is cho-
sen as O’ and the z-coordinate can be measured here.
Projection of this point into the top view provides the
other two coordinates. But how are the points E'i lo-
cated? O' is located from C; by three displacement
vectors €} = ¢/(2V3)j, e = [~¢/4i,—e/(4v3)j], €} =
[e/4i,—e/(4v/3)j] and three equations, like Eq. 1, can
be written.

Direct Kinematic Computation

Differences between pairs of these equations provide
plane coordinates and the key line coordinates to be
employed in the computationally simplest of the three
sphere equations, like Eq. 3. This is solved for the least
z-coordinate and the second and third lines of Eq. 2
produce the other two coordinates of O'.

3. CONCLUSION

It is claimed that the simplest quadratic direct solution
for “Delta” manipulators has been exposed for the first
time herein.
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Figure 1. Inverse kinematics

Figure 2. Direct kinematics






